Show simple item record

dc.contributor.author
Keidar, Daphna
dc.contributor.author
Yaron, Daniel
dc.contributor.author
Goldstein, Elisha
dc.contributor.author
Shachar, Yair
dc.contributor.author
Blass, Ayelet
dc.contributor.author
Charbinsky, Leonid
dc.contributor.author
Aharony, Israel
dc.contributor.author
Lifshitz, Liza
dc.contributor.author
Lumelsky, Dimitri
dc.contributor.author
Neeman, Ziv
dc.contributor.author
Mizrachi, Matti
dc.contributor.author
Hajouj, Majd
dc.contributor.author
Eizenbach, Nethanel
dc.contributor.author
Sela, Eyal
dc.contributor.author
Weiss, Chedva S.
dc.contributor.author
Levin, Philip
dc.contributor.author
Benjaminov, Ofer
dc.contributor.author
Bachar, Gil N.
dc.contributor.author
Tamir, Shlomit
dc.contributor.author
Rapson, Yael
dc.contributor.author
Suhami, Dror
dc.contributor.author
Atar, Eli
dc.contributor.author
Dror, Amiel A.
dc.contributor.author
Bogot, Naama R.
dc.contributor.author
Grubstein, Ahuva
dc.contributor.author
Shabshin, Nogah
dc.contributor.author
Elyada, Yishai M.
dc.contributor.author
Eldar, Yonina C.
dc.date.accessioned
2021-11-19T11:01:41Z
dc.date.available
2021-07-15T10:22:31Z
dc.date.available
2021-08-25T14:07:10Z
dc.date.available
2021-11-19T11:01:41Z
dc.date.issued
2021-12
dc.identifier.issn
0938-7994
dc.identifier.issn
1432-1084
dc.identifier.other
10.1007/s00330-021-08050-1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/494808
dc.description.abstract
Methods In this retrospective study, 1384 frontal CXRs, of COVID-19 confirmed patients imaged between March and August 2020, and 1024 matching CXRs of non-COVID patients imaged before the pandemic, were collected and used to build a deep learning classifier for detecting patients positive for COVID-19. The classifier consists of an ensemble of pre-trained deep neural networks (DNNS), specifically, ReNet34, ReNet50¸ ReNet152, and vgg16, and is enhanced by data augmentation and lung segmentation. We further implemented a nearest-neighbors algorithm that uses DNN-based image embeddings to retrieve the images most similar to a given image. Results Our model achieved accuracy of 90.3%, (95% CI: 86.3–93.7%) specificity of 90% (95% CI: 84.3–94%), and sensitivity of 90.5% (95% CI: 85–94%) on a test dataset comprising 15% (350/2326) of the original images. The AUC of the ROC curve is 0.96 (95% CI: 0.93–0.97). Conclusion We provide deep learning models, trained and evaluated on CXRs that can assist medical efforts and reduce medical staff workload in handling COVID-19. Key Points • A machine learning model was able to detect chest X-ray (CXR) images of patients tested positive for COVID-19 with accuracy and detection rate above 90%. • A tool was created for finding existing CXR images with imaging characteristics most similar to a given CXR, according to the model’s image embeddings. © European Society of Radiology 2021
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.subject
COVID-19
en_US
dc.subject
X-rays
en_US
dc.subject
Machine learning
en_US
dc.subject
Radiography
en_US
dc.subject
Thoracic
en_US
dc.title
COVID-19 classification of X-ray images using deep neural networks
en_US
dc.type
Journal Article
dc.date.published
2021-05-29
ethz.journal.title
European Radiology
ethz.journal.volume
31
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
Eur Radiol
ethz.pages.start
9654
en_US
ethz.pages.end
9663
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-07-15T10:23:53Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-11-19T11:01:48Z
ethz.rosetta.lastUpdated
2021-11-19T11:01:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=COVID-19%20classification%20of%20X-ray%20images%20using%20deep%20neural%20networks&rft.jtitle=European%20Radiology&rft.date=2021-12&rft.volume=31&rft.issue=12&rft.spage=9654&rft.epage=9663&rft.issn=0938-7994&1432-1084&rft.au=Keidar,%20Daphna&Yaron,%20Daniel&Goldstein,%20Elisha&Shachar,%20Yair&Blass,%20Ayelet&rft.genre=article&rft_id=info:doi/10.1007/s00330-021-08050-1&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record