Show simple item record

dc.contributor.author
Featherstone, Leo A.
dc.contributor.author
Di Giallonardo, Francesca
dc.contributor.author
Holmes, Edward C.
dc.contributor.author
Vaughan, Timothy G.
dc.contributor.author
Duchêne, Sebastián
dc.date.accessioned
2021-08-17T12:19:35Z
dc.date.available
2021-07-15T10:24:28Z
dc.date.available
2021-07-22T15:40:26Z
dc.date.available
2021-08-17T12:19:35Z
dc.date.issued
2021-08
dc.identifier.issn
2041-210X
dc.identifier.issn
2041-2096
dc.identifier.other
10.1111/2041-210X.13620
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/494834
dc.description.abstract
1. Phylodynamic models use pathogen genome sequence data to infer epidemiological dynamics. With the increasing genomic surveillance of pathogens, especially during the SARS-CoV-2 pandemic, new practical questions about their use are emerging. 2. One such question focuses on the inclusion of un-sequenced case occurrence data alongside sequenced data to improve phylodynamic analyses. This approach can be particularly valuable if sequencing efforts vary over time. 3. Using simulations, we demonstrate that birth–death phylodynamic models can employ occurrence data to eliminate bias in estimates of the basic reproductive number due to misspecification of the sampling process. In contrast, the coalescent exponential model is robust to such sampling biases, but in the absence of a sampling model it cannot exploit occurrence data. Subsequent analysis of the SARS-CoV-2 epidemic in the northwest USA supports these results. 4. We conclude that occurrence data are a valuable source of information in combination with birth–death models. These data should be used to bolster phylodynamic analyses of infectious diseases and other rapidly spreading species in the future.
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.subject
Bayesian statistics
en_US
dc.subject
birth–death
en_US
dc.subject
coalescent
en_US
dc.subject
pathogens
en_US
dc.subject
phylodynamics
en_US
dc.title
Infectious disease phylodynamics with occurrence data
en_US
dc.type
Journal Article
dc.date.published
2021-05-24
ethz.journal.title
Methods in Ecology and Evolution
ethz.journal.volume
12
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Methods Ecol. Evol.
ethz.pages.start
1498
en_US
ethz.pages.end
1507
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Chichester
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09490 - Stadler, Tanja / Stadler, Tanja
ethz.date.deposited
2021-07-15T10:25:50Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-17T12:19:43Z
ethz.rosetta.lastUpdated
2023-02-06T22:20:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Infectious%20disease%20phylodynamics%20with%20occurrence%20data&rft.jtitle=Methods%20in%20Ecology%20and%20Evolution&rft.date=2021-08&rft.volume=12&rft.issue=8&rft.spage=1498&rft.epage=1507&rft.issn=2041-210X&2041-2096&rft.au=Featherstone,%20Leo%20A.&Di%20Giallonardo,%20Francesca&Holmes,%20Edward%20C.&Vaughan,%20Timothy%20G.&Duch%C3%AAne,%20Sebasti%C3%A1n&rft.genre=article&rft_id=info:doi/10.1111/2041-210X.13620&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record