Quasiflats in hierarchically hyperbolic spaces
dc.contributor.author
Behrstock, Jason
dc.contributor.author
Hagen, Mark F.
dc.contributor.author
Sisto, Alessandro
dc.date.accessioned
2021-09-01T13:37:12Z
dc.date.available
2021-07-15T10:45:07Z
dc.date.available
2021-09-01T13:37:12Z
dc.date.issued
2021-04-01
dc.identifier.issn
0012-7094
dc.identifier.issn
1547-7398
dc.identifier.other
10.1215/00127094-2020-0056
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495092
dc.description.abstract
The rank of a hierarchically hyperbolic space is the maximal number of unbounded factors in a standard product region. For hierarchically hyperbolic groups, this coincides with the maximal dimension of a quasiflat. Several noteworthy examples for which the rank coincides with familiar quantities include: the dimension of maximal Dehn twist flats for mapping class groups; the maximal rank of a free abelian subgroup for right-angled Coxeter groups and right-angled Artin groups (in the latter this can also be observed as the clique number of the defining graph); and, for the Weil–Petersson metric, the rank is the integer part of half the complex dimension of Teichmüller space.
We prove that, in a hierarchically hyperbolic space (HHS), any quasiflat of dimension equal to the rank lies within finite distance of a union of standard orthants (under a very mild condition on the HHS satisfied by all natural examples). This resolves outstanding conjectures when applied to a number of different groups and spaces.
In the case of the mapping class group, we verify a conjecture of Farb. For Teichmailer space we answer a question of Brock. In the context of certain CAT (0) cubical groups, our result handles novel special cases, including right-angled Coxeter groups.
An important ingredient in the proof which we expect will have other applications, is that the hull of any finite set in an HHS is quasi-isometric to a CAT(0) cube complex of dimension bounded by the rank. (If the HHS is a CAT(0) cube complex, then the rank can be lower than the dimension of the space.)
We deduce a number of applications of these results. For instance, we show that any quasi-isometry between HHSs induces a quasi-isometry between certain factored spaces, which are simpler HHSs. This allows one, for example, to distinguish quasiisometry classes of right-angled Artin/Coxeter groups.
Another application of our results is to quasi-isometric rigidity. Our tools in many cases allow one to reduce the problem of quasi-isometric rigidity for a given hierarchically hyperbolic group to a combinatorial problem. As a template, we give a new proof of quasi-isometric rigidity of mapping class groups, which, once we have established our general quasiflats theorem, uses simpler combinatorial arguments than in previous proofs. © 2021 Duke Mathematical Journal
en_US
dc.language.iso
en
en_US
dc.publisher
Duke University Press
en_US
dc.title
Quasiflats in hierarchically hyperbolic spaces
en_US
dc.type
Journal Article
dc.date.published
2021-03-18
ethz.journal.title
Duke Mathematical Journal
ethz.journal.volume
170
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
Duke Math. J.
ethz.pages.start
909
en_US
ethz.pages.end
996
en_US
ethz.grant
Groups with hyperbolic features
en_US
ethz.identifier.wos
ethz.publication.place
Durham, NC
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
182186
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-07-15T10:46:45Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-01T13:37:30Z
ethz.rosetta.lastUpdated
2022-03-29T11:26:06Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quasiflats%20in%20hierarchically%20hyperbolic%20spaces&rft.jtitle=Duke%20Mathematical%20Journal&rft.date=2021-04-01&rft.volume=170&rft.issue=5&rft.spage=909&rft.epage=996&rft.issn=0012-7094&1547-7398&rft.au=Behrstock,%20Jason&Hagen,%20Mark%20F.&Sisto,%20Alessandro&rft.genre=article&rft_id=info:doi/10.1215/00127094-2020-0056&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [120834]