Regularity results for a class of obstacle problems with p, q-growth conditions
dc.contributor.author
Caselli, Michele
dc.contributor.author
Eleuteri, Michela
dc.contributor.author
Passarelli di Napoli, Antonia
dc.date.accessioned
2021-08-20T07:45:46Z
dc.date.available
2021-07-15T10:49:20Z
dc.date.available
2021-08-20T07:45:46Z
dc.date.issued
2021-03-22
dc.identifier.issn
2822-7840
dc.identifier.issn
2804-7214
dc.identifier.other
10.1051/cocv/2021017
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495152
dc.description.abstract
In this paper we prove the the local Lipschitz continuity for solutions to a class of obstacle problems of the type min { ∫Ω F(xm Dz) : z ϵ K ψ (Ω) }. Here 𝛫�ψ(Ω) is the set of admissible functions z ∈ u0 + W1,p(Ω) for a given u0 ∈ W1,p(Ω) such that z ≥ ψ a.e. in Ω, ψ being the obstacle and Ω being an open bounded set of ℝn, n ≥ 2. The main novelty here is that we are assuming that the integrand F(x, Dz) satisfies (p, q)-growth conditions and as a function of the x-variable belongs to a suitable Sobolev class. We remark that the Lipschitz continuity result is obtained under a sharp closeness condition between the growth and the ellipticity exponents. Moreover, we impose less restrictive assumptions on the obstacle with respect to the previous regularity results. Furthermore, assuming the obstacle ψ is locally bounded, we prove the local boundedness of the solutions to a quite large class of variational inequalities whose principal part satisfies non standard growth conditions.
en_US
dc.language.iso
en
en_US
dc.publisher
EDP Sciences
en_US
dc.subject
Variational inequalities
en_US
dc.subject
obstacle problems
en_US
dc.subject
local boundedness
en_US
dc.subject
local Lipschitz continuity
en_US
dc.title
Regularity results for a class of obstacle problems with p, q-growth conditions
en_US
dc.type
Journal Article
dc.date.published
2021-03-22
ethz.journal.title
ESAIM: Mathematical Modelling and Numerical Analysis
ethz.journal.volume
27
en_US
ethz.journal.abbreviated
ESAIM: M2AN
ethz.pages.start
19
en_US
ethz.size
26 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Les Ulis
ethz.publication.status
published
en_US
ethz.date.deposited
2021-07-15T10:50:05Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-20T07:45:52Z
ethz.rosetta.lastUpdated
2024-02-02T14:32:40Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Regularity%20results%20for%20a%20class%20of%20obstacle%20problems%20with%20p,%20q-growth%20conditions&rft.jtitle=ESAIM:%20Mathematical%20Modelling%20and%20Numerical%20Analysis&rft.date=2021-03-22&rft.volume=27&rft.spage=19&rft.issn=2822-7840&2804-7214&rft.au=Caselli,%20Michele&Eleuteri,%20Michela&Passarelli%20di%20Napoli,%20Antonia&rft.genre=article&rft_id=info:doi/10.1051/cocv/2021017&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [132267]