Zur Kurzanzeige

dc.contributor.author
Buza, Gergely
dc.contributor.author
Jain, Shobhit
dc.contributor.author
Haller, George
dc.date.accessioned
2021-08-23T09:50:13Z
dc.date.available
2021-07-15T10:51:40Z
dc.date.available
2021-08-20T13:11:20Z
dc.date.available
2021-08-23T09:50:13Z
dc.date.issued
2021-02-24
dc.identifier.issn
1364-5021
dc.identifier.issn
1471-2946
dc.identifier.issn
0080-4630
dc.identifier.issn
0950-1207
dc.identifier.other
10.1098/rspa.2020.0725
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495177
dc.description.abstract
Model reduction of large nonlinear systems often involves the projection of the governing equations onto linear subspaces spanned by carefully selected modes. The criteria to select the modes relevant for reduction are usually problem-specific and heuristic. In this work, we propose a rigorous mode-selection criterion based on the recent theory of spectral submanifolds (SSMs), which facilitates a reliable projection of the governing nonlinear equations onto modal subspaces. SSMs are exact invariant manifolds in the phase space that act as nonlinear continuations of linear normal modes. Our criterion identifies critical linear normal modes whose associated SSMs have locally the largest curvature. These modes should then be included in any projection-based model reduction as they are the most sensitive to nonlinearities. To make this mode selection automatic, we develop explicit formulae for the scalar curvature of an SSM and provide an open-source numerical implementation of our mode-selection procedure. We illustrate the power of this procedure by accurately reproducing the forced-response curves on three examples of varying complexity, including high-dimensional finite-element models.
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society
en_US
dc.subject
model reduction
en_US
dc.subject
spectral submanifolds
en_US
dc.subject
forced response
en_US
dc.title
Using spectral submanifolds for optimal mode selection in nonlinear model reduction
en_US
dc.type
Journal Article
dc.date.published
2021-02-17
ethz.journal.title
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
ethz.journal.volume
477
en_US
ethz.journal.issue
2246
en_US
ethz.journal.abbreviated
Proc. R. Soc. A
ethz.pages.start
20200725
en_US
ethz.size
21 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03973 - Haller, George / Haller, George
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03973 - Haller, George / Haller, George
ethz.date.deposited
2021-07-15T10:51:50Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-23T09:50:20Z
ethz.rosetta.lastUpdated
2023-02-06T22:21:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Using%20spectral%20submanifolds%20for%20optimal%20mode%20selection%20in%20nonlinear%20model%20reduction&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20A:%20Mathematical,%20Physical%20and%20Engineering%20Sciences&rft.date=2021-02-24&rft.volume=477&rft.issue=2246&rft.spage=20200725&rft.issn=1364-5021&1471-2946&0080-4630&0950-1207&rft.au=Buza,%20Gergely&Jain,%20Shobhit&Haller,%20George&rft.genre=article&rft_id=info:doi/10.1098/rspa.2020.0725&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige