Exposé Bourbaki 1165 : Infinité d'hypersurfaces minimales en basses dimensions d'après F. C. Marques, A. A. Neves et A. Song
Metadata only
Author
Date
2020Type
- Journal Article
ETH Bibliography
yes
Altmetrics
Abstract
Une conjecture de Shing Tung Yau du début des années 80 pose le problème de l'existence d'une infinité de surfaces minimales (points critiques de la fonctionnelle d'aire) immergées dans une variété riemannienne tridimensionnelle compacte et sans bord donnée. En explorant des problèmes de minmax sur les cycles Z2, posés par Misha Gromov et Larry Guth, au moyen de la théorie des varifolds presque minimisants de Frederick Almgren et Jon Pitts, Fernando Codà Marques et André Neves ont apporté une réponse positive à la conjecture de Yau et sa généralisation aux hypersurfaces minimales dans le cas des variétés de dimensions inférieures ou égales à 7, tout d'abord sous des hypothèses de courbures de Ricci strictement positives puis, en collaboration avec Kei Irie, pour des métriques génériques. Enfin, en 2018, Antoine Song a résolu la conjecture dans sa plus grande généralité, pour des métriques quelconques, en dimension inférieure ou égale à 7. Dans cet exposé, nous nous efforcerons de décrire l'ensemble de ces travaux ainsi que les perspectives futures dans le calcul des variations de l'aire. © 2021 SMF Show more
Publication status
publishedExternal links
Journal / series
AstérisqueVolume
Pages / Article No.
Publisher
Société Mathematique de FranceMore
Show all metadata
ETH Bibliography
yes
Altmetrics