Show simple item record

dc.contributor.author
Shapiro, Arthur
dc.contributor.author
Jang, Youngjin
dc.contributor.author
Horani, Faris
dc.contributor.author
Kauffmann, Yaron
dc.contributor.author
Lifshitz, Efrat
dc.date.accessioned
2021-07-19T05:46:54Z
dc.date.available
2021-07-16T12:36:16Z
dc.date.available
2021-07-19T05:46:54Z
dc.date.issued
2018-05-08
dc.identifier.issn
0897-4756
dc.identifier.other
10.1021/acs.chemmater.8b01455
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495519
dc.description.abstract
Attention to semiconductor nanostructures with a narrow band gap energy and low production cost has increased in recent years, due to practical demands for use in various optoelectronics and communication devices. Colloidal nanostructures from the IV–VI semiconductors, such as lead and tin chalcogenides, seem to be the most suitable materials platform; however, their poor chemical and spectral stability has impeded practical applications. The present work explored the mechanism for formation of new nanostructures, SnTe/PbTe/SnO2, with a core/shell/shell heterostructure architecture. The preparation involved a single-step post-treatment for the preprepared SnTe cores, which simultaneously generated two different consecutive shells. The process followed a remarkable Kirkendall effect, where Sn ions diffused to the exterior surface from a region below the surface and left a ringlike vacancy area. Then Pb ions diffused inward and created a PbTe shell, filling the Sn-deficient region. Finally, the ejected Sn ions at the exterior surface underwent oxidation and formed a disordered SnO2 layer. These intriguing processes were corroborated by a theoretical estimation of the relative diffusion length of the individual elements at the reaction temperature. The nanostructures which were comprised of low-toxicity elements were endowed with optical tunability and chemical stability, which lasted more than one month at ambient conditions.
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.title
Kirkendall Effect: Main Growth Mechanism for a New SnTe/PbTe/SnO2 Nano-Heterostructure
en_US
dc.type
Journal Article
dc.date.published
2018-04-16
ethz.journal.title
Chemistry of Materials
ethz.journal.volume
30
en_US
ethz.journal.issue
9
en_US
ethz.journal.abbreviated
Chem. Mater.
ethz.pages.start
3141
en_US
ethz.pages.end
3149
en_US
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::04000 - ETHZ Gebäude::04029 - LEE Leonhardstr. 21, 8092 Zürich
en_US
ethz.date.deposited
2021-07-16T12:36:22Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-07-19T05:47:00Z
ethz.rosetta.lastUpdated
2022-03-29T10:27:54Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Kirkendall%20Effect:%20Main%20Growth%20Mechanism%20for%20a%20New%20SnTe/PbTe/SnO2%20Nano-Heterostructure&rft.jtitle=Chemistry%20of%20Materials&rft.date=2018-05-08&rft.volume=30&rft.issue=9&rft.spage=3141&rft.epage=3149&rft.issn=0897-4756&rft.au=Shapiro,%20Arthur&Jang,%20Youngjin&Horani,%20Faris&Kauffmann,%20Yaron&Lifshitz,%20Efrat&rft.genre=article&rft_id=info:doi/10.1021/acs.chemmater.8b01455&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record