Show simple item record

dc.contributor.author
Zimmermann, Nico
dc.contributor.author
Breu, Mario
dc.contributor.author
Mayr, Josef
dc.contributor.author
Wegener, Konrad
dc.date.accessioned
2021-09-02T11:36:00Z
dc.date.available
2021-07-17T02:59:59Z
dc.date.available
2021-09-02T11:36:00Z
dc.date.issued
2021
dc.identifier.issn
0007-8506
dc.identifier.issn
1660-2773
dc.identifier.other
10.1016/j.cirp.2021.04.029
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495595
dc.description.abstract
The presented method significantly increases the self-optimization ability of thermal error compensation models by triggering on-machine measurements when unknown thermal conditions occur. These conditions, which are not represented by the training data of the compensation models, are identified by a novelty detection approach based on one-class support vector machines. The results show that the autonomously triggered on-machine measurements applied to a 5-axis machine tool overcome the trade-off between precision and productivity for thermal error compensation. The non-productive time to detect an exceedance of the predefined tolerances is reduced by 78% without significantly reducing the precision of the thermal error compensation.
en_US
dc.language.iso
en
en_US
dc.publisher
CIRP
en_US
dc.subject
Thermal error
en_US
dc.subject
Compensation
en_US
dc.subject
Adaptive control
en_US
dc.title
Autonomously triggered model updates for self-learning thermal error compensation
en_US
dc.type
Journal Article
dc.date.published
2021-05-19
ethz.journal.title
CIRP Annals
ethz.journal.volume
70
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
CIRP Ann.
ethz.pages.start
431
en_US
ethz.pages.end
434
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Paris
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::03641 - Wegener, Konrad / Wegener, Konrad
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::03641 - Wegener, Konrad / Wegener, Konrad
ethz.date.deposited
2021-07-17T03:00:04Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-02T11:36:07Z
ethz.rosetta.lastUpdated
2022-03-29T11:27:23Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Autonomously%20triggered%20model%20updates%20for%20self-learning%20thermal%20error%20compensation&rft.jtitle=CIRP%20Annals&rft.date=2021&rft.volume=70&rft.issue=1&rft.spage=431&rft.epage=434&rft.issn=0007-8506&1660-2773&rft.au=Zimmermann,%20Nico&Breu,%20Mario&Mayr,%20Josef&Wegener,%20Konrad&rft.genre=article&rft_id=info:doi/10.1016/j.cirp.2021.04.029&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record