Show simple item record

dc.contributor.author
De Ryck, Tim
dc.contributor.author
Mishra, Siddhartha
dc.date.accessioned
2021-07-22T13:50:12Z
dc.date.available
2021-07-22T10:00:44Z
dc.date.available
2021-07-22T13:50:12Z
dc.date.issued
2021-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/497071
dc.description.abstract
Physics informed neural networks approximate solutions of PDEs by minimizing pointwise residuals. We derive rigorous bounds on the error, incurred by PINNs in approximating the solutions of a large class of linear parabolic PDEs, namely Kolmogorov equations that include the heat equation and Black-Scholes equation of option pricing, as examples. We construct neural networks, whose PINN residual (generalization error) can be made as small as desired. We also prove that the total L2-error can be bounded by the generalization error, which in turn is bounded in terms of the training error, provided that a sufficient number of randomly chosen training (collocation) points is used. Moreover, we prove that the size of the PINNs and the number of training samples only grow polynomially with the underlying dimension, enabling PINNs to overcome the curse of dimensionality in this context. These results enable us to provide a comprehensive error analysis for PINNs in approximating Kolmogorov PDEs.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Deep learning
en_US
dc.subject
Neural networks
en_US
dc.subject
PINNs
en_US
dc.subject
Kolmogonov PDE
en_US
dc.title
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2021-17
en_US
ethz.size
26 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=959
ethz.relation.isPreviousVersionOf
10.3929/ethz-b-000583235
ethz.date.deposited
2021-07-22T10:00:50Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=959
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-07-22T13:50:19Z
ethz.rosetta.lastUpdated
2022-03-29T10:35:35Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Error%20analysis%20for%20physics%20informed%20neural%20networks%20(PINNs)%20approximating%20Kolmogorov%20PDEs&rft.jtitle=SAM%20Research%20Report&rft.date=2021-06&rft.volume=2021-17&rft.au=De%20Ryck,%20Tim&Mishra,%20Siddhartha&rft.genre=report&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record