Show simple item record

dc.contributor.author
Giannopoulos, Iason
dc.contributor.author
Singh, Abhairaj
dc.contributor.author
Le Gallo, Manuel
dc.contributor.author
Jonnalagadda, Vara Prasad
dc.contributor.author
Hamdioui, Said
dc.contributor.author
Sebastian, Abu
dc.date.accessioned
2021-08-12T09:04:49Z
dc.date.available
2021-07-23T04:07:01Z
dc.date.available
2021-08-12T09:04:49Z
dc.date.issued
2020-12
dc.identifier.issn
2640-4567
dc.identifier.other
10.1002/aisy.202000141
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/497216
dc.identifier.doi
10.3929/ethz-b-000497216
dc.description.abstract
In recent years, several in-memory logic primitives were proposed where bit-wise logical operations are performed in memory by exploiting the physical attributes of memristive devices organized in a crossbar array. However, a convincing real-world application for in-memory logic and its experimental validation are still lacking. Herein, the application of database query where a database is stored in an array of binary memristive devices is presented. The queries are formulated in terms of bulk bit-wise operations and are executed in memory by exploiting Kirchhoff's current summation law. The concept is experimentally demonstrated by executing error-free queries on a small 4x8 selector-less phase-change memory crossbar. The impact of crossbar size, resistance of routing wires, and interdevice variability on the accuracy of the logical operations are studied through numerical and circuit-level simulations. Finally, a system for cascaded query is proposed that combines the in-memory logic with conventional digital logic and its functionality is verified on a healthcare-related database. It is estimated that an 11-step long query is executed in 36ns, consuming 560 mu W, thus achieving an energy efficiency of 166TOPS/W.
en_US
dc.format
application/pdf
en_US
dc.publisher
Wiley-VCH
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
database queries
en_US
dc.subject
in-memory computing
en_US
dc.subject
phase-change memories
en_US
dc.title
In-Memory Database Query
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-10-14
ethz.journal.title
Advanced Intelligent Systems
ethz.journal.volume
2
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
Adv. Intell. Syst.
ethz.pages.start
2000141
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Computation-in-memory architecture based on resistive devices
en_US
ethz.identifier.wos
ethz.publication.place
Weinheim
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
780215
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2021-07-23T04:07:16Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-12T09:04:56Z
ethz.rosetta.lastUpdated
2022-03-29T11:01:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=In-Memory%20Database%20Query&rft.jtitle=Advanced%20Intelligent%20Systems&rft.date=2020-12&rft.volume=2&rft.issue=12&rft.spage=2000141&rft.issn=2640-4567&rft.au=Giannopoulos,%20Iason&Singh,%20Abhairaj&Le%20Gallo,%20Manuel&Jonnalagadda,%20Vara%20Prasad&Hamdioui,%20Said&rft.genre=article&rft_id=info:doi/10.1002/aisy.202000141&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record