Metadata only
Date
2021-07Type
- Report
ETH Bibliography
yes
Altmetrics
Abstract
Fourier neural operators (FNOs) have recently been proposed as an effective framework for learning operators that map between infinite-dimensional spaces. We prove that FNOs are universal, in the sense that they can approximate any continuous operator to desired accuracy. Moreover, we suggest a mechanism by which FNOs can approximate operators associated with PDEs efficiently. Explicit error bounds are derived to show that the size of the FNO, approximating operators associated with a Darcy type elliptic PDE and with the incompressible Navier-Stokes equations of fluid dynamics, only increases sub (log)-linearly in terms of the reciprocal of the error. Thus, FNOs are shown to efficiently approximate operators arising in a large class of PDEs. Show more
Publication status
publishedExternal links
Journal / series
SAM Research ReportVolume
Publisher
Seminar for Applied Mathematics, ETH ZurichOrganisational unit
03851 - Mishra, Siddhartha / Mishra, Siddhartha
More
Show all metadata
ETH Bibliography
yes
Altmetrics