Generation of a 3D cardiac model based on 2D echocardiography video data
dc.contributor.author
Amrani, Mounir
dc.contributor.supervisor
Buhmann, Joachim M.
dc.contributor.supervisor
Laumer, Fabian
dc.contributor.supervisor
Manduchi, Laura
dc.date.accessioned
2021-07-28T06:55:29Z
dc.date.available
2021-07-27T14:14:35Z
dc.date.available
2021-07-28T06:55:29Z
dc.date.issued
2021-07-19
dc.identifier.uri
http://hdl.handle.net/20.500.11850/497913
dc.identifier.doi
10.3929/ethz-b-000497913
dc.description.abstract
Echocardiography is a non-invasive medical imaging tool that serves to assess the cardiac functionality by producing images of the heart’s tissues and chambers using non-ionizing ultrasound waves. We propose a generative model that learns to produce personalized 4D (3D + time) heart models from 3D (2D + time) echocardiograms. We argue that such heart model may facilitate downstream tasks such as disease diagnosis and prediction. Our model is based on 2 Autoencoders and a Cycle GAN. The 2 Autoencoders process sequences of images (echocardiograms) and sequences of meshes (3D heart) to extract low dimensional representations of these sequences. We develop the Autoencoder model for processing sequences of meshes based on [1]. We also develop the Cycle GAN model which translates between the 2 data modalities (image sequences and mesh sequences) by translating between their latent space representations in a cycle-consistent manner. We evaluate the performance of the models we develop qualitatively and quantitatively and show that our full 3D to 4D model achieves promising results.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich, Department of Computer Science
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Generation of a 3D cardiac model based on 2D echocardiography video data
en_US
dc.type
Master Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-07-28
ethz.size
87 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. / Buhmann, Joachim M.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. / Buhmann, Joachim M.
en_US
ethz.date.deposited
2021-07-27T14:14:41Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-07-28T06:55:35Z
ethz.rosetta.lastUpdated
2023-02-06T22:17:14Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Generation%20of%20a%203D%20cardiac%20model%20based%20on%202D%20echocardiography%20video%20data&rft.date=2021-07-19&rft.au=Amrani,%20Mounir&rft.genre=unknown&rft.btitle=Generation%20of%20a%203D%20cardiac%20model%20based%20on%202D%20echocardiography%20video%20data
Files in this item
Publication type
-
Master Thesis [1934]