Sparse Gaussian Processes on Discrete Domains
dc.contributor.author
Fortuin, Vincent
dc.contributor.author
Dresdner, Gideon
dc.contributor.author
Strathmann, Heiko
dc.contributor.author
Rätsch, Gunnar
dc.date.accessioned
2021-08-02T12:20:50Z
dc.date.available
2021-07-28T03:02:50Z
dc.date.available
2021-08-02T12:20:50Z
dc.date.issued
2021
dc.identifier.issn
2169-3536
dc.identifier.other
10.1109/ACCESS.2021.3082761
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/497930
dc.identifier.doi
10.3929/ethz-b-000497930
dc.description.abstract
Kernel methods on discrete domains have shown great promise for many challenging data types, for instance, biological sequence data and molecular structure data. Scalable kernel methods like Support Vector Machines may offer good predictive performances but do not intrinsically provide uncertainty estimates. In contrast, probabilistic kernel methods like Gaussian Processes offer uncertainty estimates in addition to good predictive performance but fall short in terms of scalability. While the scalability of Gaussian processes can be improved using sparse inducing point approximations, the selection of these inducing points remains challenging. We explore different techniques for selecting inducing points on discrete domains, including greedy selection, determinantal point processes, and simulated annealing. We find that simulated annealing, which can select inducing points that are not in the training set, can perform competitively with support vector machines and full Gaussian processes on synthetic data, as well as on challenging real-world DNA sequence data.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Kernel
en_US
dc.subject
Gaussian processes
en_US
dc.subject
Uncertainty
en_US
dc.subject
Training
en_US
dc.subject
Optimization
en_US
dc.subject
Simulated annealing
en_US
dc.subject
DNA
en_US
dc.subject
machine learning
en_US
dc.subject
uncertainty quantification
en_US
dc.subject
discrete optimization
en_US
dc.title
Sparse Gaussian Processes on Discrete Domains
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-05-21
ethz.journal.title
IEEE Access
ethz.journal.volume
9
en_US
ethz.pages.start
76750
en_US
ethz.pages.end
76758
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09568 - Rätsch, Gunnar / Rätsch, Gunnar
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09568 - Rätsch, Gunnar / Rätsch, Gunnar
en_US
ethz.relation.isNewVersionOf
20.500.11850/316357
ethz.date.deposited
2021-07-28T03:03:03Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-02T12:20:57Z
ethz.rosetta.lastUpdated
2022-03-29T10:52:30Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sparse%20Gaussian%20Processes%20on%20Discrete%20Domains&rft.jtitle=IEEE%20Access&rft.date=2021&rft.volume=9&rft.spage=76750&rft.epage=76758&rft.issn=2169-3536&rft.au=Fortuin,%20Vincent&Dresdner,%20Gideon&Strathmann,%20Heiko&R%C3%A4tsch,%20Gunnar&rft.genre=article&rft_id=info:doi/10.1109/ACCESS.2021.3082761&
Files in this item
Publication type
-
Journal Article [132169]