
Open access
Datum
2021Typ
- Journal Article
ETH Bibliographie
yes
Altmetrics
Abstract
We investigate the performance of the Deep Hedging framework under training paths beyond the (finite dimensional) Markovian setup. In particular, we analyse the hedging performance of the original architecture under rough volatility models in view of existing theoretical results for those. Furthermore, we suggest parsimonious but suitable network architectures capable of capturing the non-Markoviantity of time-series. We also analyse the hedging behaviour in these models in terms of Profit and Loss (P&L) distributions and draw comparisons to jump diffusion models if the rebalancing frequency is realistically small. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000499234Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
RisksBand
Seiten / Artikelnummer
Verlag
MDPIThema
deep learning; rough volatility; hedgingOrganisationseinheit
03845 - Teichmann, Josef / Teichmann, Josef
Förderung
179114 - Mathematical Finance in the light of machine learning (SNF)
ETH Bibliographie
yes
Altmetrics