Deep Hedging under Rough Volatility
dc.contributor.author
Horvath, Blanka
dc.contributor.author
Teichmann, Josef
dc.contributor.author
Zuric, Zan
dc.date.accessioned
2021-09-03T08:50:17Z
dc.date.available
2021-08-04T00:03:14Z
dc.date.available
2021-09-03T08:50:17Z
dc.date.issued
2021
dc.identifier.other
10.3390/risks9070138
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/499234
dc.identifier.doi
10.3929/ethz-b-000499234
dc.description.abstract
We investigate the performance of the Deep Hedging framework under training paths beyond the (finite dimensional) Markovian setup. In particular, we analyse the hedging performance of the original architecture under rough volatility models in view of existing theoretical results for those. Furthermore, we suggest parsimonious but suitable network architectures capable of capturing the non-Markoviantity of time-series. We also analyse the hedging behaviour in these models in terms of Profit and Loss (P&L) distributions and draw comparisons to jump diffusion models if the rebalancing frequency is realistically small.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
deep learning
en_US
dc.subject
rough volatility
en_US
dc.subject
hedging
en_US
dc.title
Deep Hedging under Rough Volatility
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-07-20
ethz.journal.title
Risks
ethz.journal.volume
9
en_US
ethz.journal.issue
7
en_US
ethz.pages.start
138
en_US
ethz.size
20 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Mathematical Finance in the light of machine learning
en_US
ethz.identifier.wos
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03845 - Teichmann, Josef / Teichmann, Josef
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03845 - Teichmann, Josef / Teichmann, Josef
ethz.grant.agreementno
179114
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-08-04T00:03:31Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-03T08:50:23Z
ethz.rosetta.lastUpdated
2022-03-29T11:28:23Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20Hedging%20under%20Rough%20Volatility&rft.jtitle=Risks&rft.date=2021&rft.volume=9&rft.issue=7&rft.spage=138&rft.au=Horvath,%20Blanka&Teichmann,%20Josef&Zuric,%20Zan&rft.genre=article&rft_id=info:doi/10.3390/risks9070138&
Files in this item
Publication type
-
Journal Article [120834]