An optimized registration workflow and standard geometric space for small animal brain imaging
dc.contributor.author
Ioanas, Horea-Ioan
dc.contributor.author
Marks, Markus
dc.contributor.author
Zerbi, Valerio
dc.contributor.author
Yanik, Mehmet Fatih
dc.contributor.author
Rudin, Markus
dc.date.accessioned
2021-08-05T07:31:14Z
dc.date.available
2021-08-05T03:16:01Z
dc.date.available
2021-08-05T07:31:14Z
dc.date.issued
2021-11-01
dc.identifier.issn
1053-8119
dc.identifier.issn
1095-9572
dc.identifier.other
10.1016/j.neuroimage.2021.118386
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/499571
dc.identifier.doi
10.3929/ethz-b-000499571
dc.description.abstract
The reliability of scientific results critically depends on reproducible and transparent data processing. Cross-subject and cross-study comparability of imaging data in general, and magnetic resonance imaging (MRI) data in particular, is contingent on the quality of registration to a standard reference space. In small animal MRI this is not adequately provided by currently used processing workflows, which utilize high-level scripts optimized for human data, and adapt animal data to fit the scripts, rather than vice-versa. In this fully reproducible article we showcase a generic workflow optimized for the mouse brain, alongside a standard reference space suited to harmonize data between analysis and operation. We introduce four separate metrics for automated quality control (QC), and a visualization method to aid operator inspection. Benchmarking this workflow against common legacy practices reveals that it performs more consistently, better preserves variance across subjects while minimizing variance across sessions, and improves both volume and smoothness conservation RMSE approximately 2-fold. We propose this open source workflow and the QC metrics as a new standard for small animal MRI registration, ensuring workflow robustness, data comparability, and region assignment validity, all of which are indispensable prerequisites for the comparability of scientific results across experiments and centers.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
An optimized registration workflow and standard geometric space for small animal brain imaging
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-07-17
ethz.journal.title
NeuroImage
ethz.journal.volume
241
en_US
ethz.journal.abbreviated
NeuroImage
ethz.pages.start
118386
en_US
ethz.size
9 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Diego, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02535 - Institut für Bewegungswiss. und Sport / Institut of Human Movement Sc. and Sport::03963 - Wenderoth, Nicole / Wenderoth, Nicole
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09474 - Yanik, Mehmet Fatih / Yanik, Mehmet Fatih
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02535 - Institut für Bewegungswiss. und Sport / Institut of Human Movement Sc. and Sport::03963 - Wenderoth, Nicole / Wenderoth, Nicole
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09474 - Yanik, Mehmet Fatih / Yanik, Mehmet Fatih
ethz.date.deposited
2021-08-05T03:16:05Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-05T07:31:20Z
ethz.rosetta.lastUpdated
2022-03-29T10:56:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20optimized%20registration%20workflow%20and%20standard%20geometric%20space%20for%20small%20animal%20brain%20imaging&rft.jtitle=NeuroImage&rft.date=2021-11-01&rft.volume=241&rft.spage=118386&rft.issn=1053-8119&1095-9572&rft.au=Ioanas,%20Horea-Ioan&Marks,%20Markus&Zerbi,%20Valerio&Yanik,%20Mehmet%20Fatih&Rudin,%20Markus&rft.genre=article&rft_id=info:doi/10.1016/j.neuroimage.2021.118386&
Files in this item
Publication type
-
Journal Article [132160]