Show simple item record

dc.contributor.author
Wang, Yi
dc.contributor.author
Von Krannichfeldt, Leandro
dc.contributor.author
Hug, Gabriela
dc.date.accessioned
2021-08-23T14:38:02Z
dc.date.available
2021-08-20T02:46:46Z
dc.date.available
2021-08-20T06:35:54Z
dc.date.available
2021-08-23T14:38:02Z
dc.date.issued
2021
dc.identifier.isbn
978-1-6654-3597-0
en_US
dc.identifier.isbn
978-1-6654-1173-8
en_US
dc.identifier.other
10.1109/PowerTech46648.2021.9494815
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501437
dc.description.abstract
Probabilistic load forecasting (PLF) has been extensively studied to characterize the uncertainties of future loads. Traditional PLF is implemented based on the historical load data itself and other relevant factors. However, the prevalence of smart meters provides more fine-grained consumption information. This paper proposes a novel probabilistic aggregated load forecasting algorithm that makes full use of fine-grained smart meter data. It first applies clustering-based methods for point aggregated load forecasting. By varying clustering algorithms, multiple point forecasts can be obtained. On this basis, different quantile regression models are implemented to combine these point forecasts in order to form the final probabilistic forecasts. Case studies on a real-world dataset demonstrate the superiority of our proposed method.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Probabilistic load forecasting
en_US
dc.subject
smart meter
en_US
dc.subject
load aggregation
en_US
dc.subject
Quantile regression
en_US
dc.title
Probabilistic Aggregated Load Forecasting with Fine-grained Smart Meter Data
en_US
dc.type
Conference Paper
dc.date.published
2021-07-29
ethz.book.title
2021 IEEE Madrid PowerTech
en_US
ethz.pages.start
9494815
en_US
ethz.size
6 p.
en_US
ethz.event
14th IEEE PowerTech Conference (PowerTech 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
June 28 – July 2, 2021
en_US
ethz.notes
Conference lecture held on June 29, 2021
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.date.deposited
2021-08-20T02:46:54Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-23T14:38:09Z
ethz.rosetta.lastUpdated
2023-02-06T22:21:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Probabilistic%20Aggregated%20Load%20Forecasting%20with%20Fine-grained%20Smart%20Meter%20Data&rft.date=2021&rft.spage=9494815&rft.au=Wang,%20Yi&Von%20Krannichfeldt,%20Leandro&Hug,%20Gabriela&rft.isbn=978-1-6654-3597-0&978-1-6654-1173-8&rft.genre=proceeding&rft_id=info:doi/10.1109/PowerTech46648.2021.9494815&rft.btitle=2021%20IEEE%20Madrid%20PowerTech
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record