Zur Kurzanzeige

dc.contributor.author
Bogunovic, Ilija
dc.contributor.author
Losalka, Arpan
dc.contributor.author
Krause, Andreas
dc.contributor.author
Scarlett, Jonathan
dc.contributor.editor
Banerjee, Arindam
dc.contributor.editor
Fukumizu, Kenji
dc.date.accessioned
2021-08-30T12:50:42Z
dc.date.available
2021-08-22T02:37:38Z
dc.date.available
2021-08-30T12:50:42Z
dc.date.issued
2021
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501679
dc.description.abstract
We consider a stochastic linear bandit problem in which the rewards are not only subject to random noise, but also adversarial attacks subject to a suitable budget C (i.e., an upper bound on the sum of corruption magnitudes across the time horizon). We provide two variants of a Robust Phased Elimination algorithm, one that knows C and one that does not. Both variants are shown to attain near-optimal regret in the non-corrupted case C = 0, while incurring additional additive terms respectively having a linear and quadratic dependency on C in general. We present algorithm-independent lower bounds showing that these additive terms are nearoptimal. In addition, in a contextual setting, we revisit a setup of diverse contexts, and show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing C.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
Stochastic Linear Bandits Robust to Adversarial Attacks
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
130
en_US
ethz.pages.start
991
en_US
ethz.pages.end
999
en_US
ethz.event
24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
April 13-15, 2021
en_US
ethz.grant
Reliable Data-Driven Decision Making in Cyber-Physical Systems
en_US
ethz.grant
Robust Sample-Efficient Learning when Data ist Costly
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
ethz.identifier.url
https://proceedings.mlr.press/v130/bogunovic21a.html
ethz.grant.agreementno
815943
ethz.grant.agreementno
19-2 FEL-47
ethz.grant.agreementno
815943
ethz.grant.agreementno
19-2 FEL-47
ethz.grant.fundername
EC
ethz.grant.fundername
ETHZ
ethz.grant.fundername
EC
ethz.grant.fundername
ETHZ
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.program
H2020
ethz.grant.program
ETH Fellows
ethz.grant.program
H2020
ethz.grant.program
ETH Fellows
ethz.date.deposited
2021-08-22T02:37:49Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-03T10:53:48Z
ethz.rosetta.lastUpdated
2022-03-29T11:22:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Stochastic%20Linear%20Bandits%20Robust%20to%20Adversarial%20Attacks&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2021&rft.volume=130&rft.spage=991&rft.epage=999&rft.issn=2640-3498&rft.au=Bogunovic,%20Ilija&Losalka,%20Arpan&Krause,%20Andreas&Scarlett,%20Jonathan&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2024th%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Statistics%20(AISTATS%202021)
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige