Momentum Improves Optimization on Riemannian Manifolds
dc.contributor.author
Alimisis, Foivos
dc.contributor.author
Orvieto, Antonio
dc.contributor.author
Bécigneul, Gary
dc.contributor.author
Lucchi, Aurélien
dc.contributor.editor
Banerjee, Arindam
dc.contributor.editor
Fukumizu, Kenji
dc.date.accessioned
2021-08-30T12:46:54Z
dc.date.available
2021-08-22T02:37:38Z
dc.date.available
2021-08-30T12:46:54Z
dc.date.issued
2021
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501680
dc.description.abstract
We develop a new Riemannian descent algorithm that relies on momentum to improve over existing first-order methods for geodesically convex optimization. In contrast, accelerated convergence rates proved in prior work have only been shown to hold for geodesically strongly-convex objective functions. We further extend our algorithm to geodesically weakly-quasi-convex objectives. Our proofs of convergence rely on a novel estimate sequence that illustrates the dependency of the convergence rate on the curvature of the manifold. We validate our theoretical results empirically on several optimization problems defined on the sphere and on the manifold of positive definite matrices.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
Momentum Improves Optimization on Riemannian Manifolds
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
130
en_US
ethz.pages.start
1351
en_US
ethz.pages.end
1359
en_US
ethz.event
24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
April 13-15, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
ethz.identifier.url
https://proceedings.mlr.press/v130/alimisis21a.html
ethz.date.deposited
2021-08-22T02:37:49Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-30T12:47:02Z
ethz.rosetta.lastUpdated
2022-03-29T11:22:37Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Momentum%20Improves%20Optimization%20on%20Riemannian%20Manifolds&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2021&rft.volume=130&rft.spage=1351&rft.epage=1359&rft.issn=2640-3498&rft.au=Alimisis,%20Foivos&Orvieto,%20Antonio&B%C3%A9cigneul,%20Gary&Lucchi,%20Aur%C3%A9lien&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2024th%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Statistics%20(AISTATS%202021)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33071]