Spectral Tensor Train Parameterization of Deep Learning Layers
dc.contributor.author
Obukhov, Anton
dc.contributor.author
Rakhuba, Maxim
dc.contributor.author
Liniger, Alexander
dc.contributor.author
Huang, Zhiwu
dc.contributor.author
Georgoulis, Stamatios
dc.contributor.author
Dai, Dengxin
dc.contributor.author
Van Gool, Luc
dc.contributor.editor
Banerjee, Arindam
dc.contributor.editor
Fukumizu, Kenji
dc.date.accessioned
2021-08-30T12:41:13Z
dc.date.available
2021-08-22T02:37:39Z
dc.date.available
2021-08-30T12:41:13Z
dc.date.issued
2021
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501684
dc.description.abstract
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context. The low-rank property leads to parameter efficiency and permits taking computational shortcuts when computing mappings. Spectral properties are often subject to constraints in optimization problems, leading to better models and stability of optimization. We start by looking at the compact SVD parameterization of weight matrices and identifying redundancy sources in the parameterization. We further apply the Tensor Train (TT) decomposition to the compact SVD components, and propose a non-redundant differentiable parameterization of fixed TT-rank tensor manifolds, termed the Spectral Tensor Train Parameterization (STTP). We demonstrate the effects of neural network compression in the image classification setting and both compression and improved training stability in the generative adversarial training setting.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
Spectral Tensor Train Parameterization of Deep Learning Layers
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
130
en_US
ethz.pages.start
3547
en_US
ethz.pages.end
3555
en_US
ethz.event
24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
April 13-15, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.identifier.url
https://proceedings.mlr.press/v130/obukhov21a.html
ethz.relation.isPartOf
10.3929/ethz-b-000578378
ethz.date.deposited
2021-08-22T02:37:49Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-30T12:41:21Z
ethz.rosetta.lastUpdated
2021-08-30T12:41:21Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Spectral%20Tensor%20Train%20Parameterization%20of%20Deep%20Learning%20Layers&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2021&rft.volume=130&rft.spage=3547&rft.epage=3555&rft.issn=2640-3498&rft.au=Obukhov,%20Anton&Rakhuba,%20Maxim&Liniger,%20Alexander&Huang,%20Zhiwu&Georgoulis,%20Stamatios&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2024th%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Statistics%20(AISTATS%202021)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35260]