Instance Segmentation, Body Part Parsing, and Pose Estimation of Human Figures in Pictorial Maps
dc.contributor.author
Schnürer, Raimund
dc.contributor.author
Öztireli, A. Cengiz
dc.contributor.author
Heitzler, Magnus
dc.contributor.author
Sieber, René
dc.contributor.author
Hurni, Lorenz
dc.date.accessioned
2022-10-20T09:31:11Z
dc.date.available
2021-08-23T02:36:30Z
dc.date.available
2021-08-30T11:28:47Z
dc.date.available
2022-10-03T14:06:56Z
dc.date.available
2022-10-20T09:31:11Z
dc.date.issued
2022
dc.identifier.issn
2372-9341
dc.identifier.issn
2372-9333
dc.identifier.other
10.1080/23729333.2021.1949087
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501723
dc.identifier.doi
10.3929/ethz-b-000501723
dc.description.abstract
In recent years, convolutional neural networks (CNNs) have been applied successfully to recognise persons, their body parts and pose keypoints in photos and videos. The transfer of these techniques to artificially created images is rather unexplored, though challenging since these images are drawn in different styles, body proportions, and levels of abstraction. In this work, we study these problems on the basis of pictorial maps where we identify included human figures with two consecutive CNNs: We first segment individual figures with Mask R-CNN, and then parse their body parts and estimate their poses simultaneously with four different UNet++ versions. We train the CNNs with a mixture of real persons and synthetic figures and compare the results with manually annotated test datasets consisting of pictorial figures. By varying the training datasets and the CNN configurations, we were able to improve the original Mask R-CNN model and we achieved moderately satisfying results with the UNet++ versions. The extracted figures may be used for animation and storytelling and may be relevant for the analysis of historic and contemporary maps.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Taylor & Francis
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en_US
dc.subject
Convolutional neural networks
en_US
dc.subject
map digitisation
en_US
dc.title
Instance Segmentation, Body Part Parsing, and Pose Estimation of Human Figures in Pictorial Maps
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-08-10
ethz.journal.title
International Journal of Cartography
ethz.journal.volume
8
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
291
en_US
ethz.pages.end
307
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Storytelling with Animated Interactive Objects in Real-time 3D Maps
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Abingdon
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02648 - Inst. f. Kartografie und Geoinformation / Institute of Cartography&Geoinformation::03466 - Hurni, Lorenz / Hurni, Lorenz
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02648 - Inst. f. Kartografie und Geoinformation / Institute of Cartography&Geoinformation::03466 - Hurni, Lorenz / Hurni, Lorenz
ethz.grant.agreementno
ETH-11 17-1
ethz.grant.fundername
ETHZ
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.program
ETH Grants
ethz.relation.isSupplementedBy
handle/20.500.11850/648440
ethz.relation.isSupplementedBy
handle/20.500.11850/648559
ethz.relation.isSupplementedBy
10.3929/ethz-b-000648444
ethz.relation.isPartOf
10.3929/ethz-b-000663385
ethz.date.deposited
2021-08-23T02:36:54Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-10-03T14:06:57Z
ethz.rosetta.lastUpdated
2023-02-07T07:16:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Instance%20Segmentation,%20Body%20Part%20Parsing,%20and%20Pose%20Estimation%20of%20Human%20Figures%20in%20Pictorial%20Maps&rft.jtitle=International%20Journal%20of%20Cartography&rft.date=2022&rft.volume=8&rft.issue=3&rft.spage=291&rft.epage=307&rft.issn=2372-9341&2372-9333&rft.au=Schn%C3%BCrer,%20Raimund&%C3%96ztireli,%20A.%20Cengiz&Heitzler,%20Magnus&Sieber,%20Ren%C3%A9&Hurni,%20Lorenz&rft.genre=article&rft_id=info:doi/10.1080/23729333.2021.1949087&
Files in this item
Publication type
-
Journal Article [132164]