Deep Learning Based Digital Back Propagation with Polarization State Rotation & Phase Noise Invariance
dc.contributor.author
Bitachon, Bertold Ian
dc.contributor.author
Ghazisaeidi, Amirhossein
dc.contributor.author
Bäuerle, Benedikt
dc.contributor.author
Eppenberger, Marco
dc.contributor.author
Leuthold, Juerg
dc.date.accessioned
2021-08-31T09:47:00Z
dc.date.available
2021-08-31T09:47:00Z
dc.date.issued
2020
dc.identifier.isbn
978-1-943580-71-2
en_US
dc.identifier.other
10.1364/OFC.2020.M1G.2
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/503237
dc.description.abstract
A new deep learning training method for digital back propagation (DBP) is introduced. It is invariant to polarization state rotation and phase noise. Applying the method one gains more than 1 dB over standard DBP.
dc.language.iso
en
en_US
dc.publisher
OSA Publishing
dc.title
Deep Learning Based Digital Back Propagation with Polarization State Rotation & Phase Noise Invariance
en_US
dc.type
Conference Paper
ethz.book.title
Optical Fiber Communication Conference (OFC) 2020
en_US
ethz.journal.title
OSA Technical Digest
ethz.pages.start
M1G.2
en_US
ethz.size
3 p.
en_US
ethz.event
The Optical Networking and Communication Conference & Exhibition (OFC 2020)
en_US
ethz.event.location
San Diego, CA, USA
en_US
ethz.event.date
March 8-12, 2020
en_US
ethz.grant
Plasmonic-Silicon-Organic Hybrid – a Universal Platform for THz Communications
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02635 - Institut für Elektromagnetische Felder / Electromagnetic Fields Laboratory
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02635 - Institut für Elektromagnetische Felder / Electromagnetic Fields Laboratory::03974 - Leuthold, Juerg / Leuthold, Juerg
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02635 - Institut für Elektromagnetische Felder / Electromagnetic Fields Laboratory::03974 - Leuthold, Juerg / Leuthold, Juerg
ethz.grant.agreementno
670478
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2020-05-30T03:13:33Z
ethz.source
WOS
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-31T09:47:17Z
ethz.rosetta.lastUpdated
2024-02-02T14:35:26Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/501649
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/417458
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20Learning%20Based%20Digital%20Back%20Propagation%20with%20Polarization%20State%20Rotation%20&%20Phase%20Noise%20Invariance&rft.jtitle=OSA%20Technical%20Digest&rft.date=2020&rft.spage=M1G.2&rft.au=Bitachon,%20Bertold%20Ian&Ghazisaeidi,%20Amirhossein&B%C3%A4uerle,%20Benedikt&Eppenberger,%20Marco&Leuthold,%20Juerg&rft.isbn=978-1-943580-71-2&rft.genre=proceeding&rft_id=info:doi/10.1364/OFC.2020.M1G.2&rft.btitle=Optical%20Fiber%20Communication%20Conference%20(OFC)%202020
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35263]