Show simple item record

dc.contributor.author
Gu, Nianlong
dc.contributor.author
Ash, Elliott
dc.contributor.author
Hahnloser, Richard H.R.
dc.date.accessioned
2021-09-06T04:49:22Z
dc.date.available
2021-09-03T13:27:38Z
dc.date.available
2021-09-06T04:49:22Z
dc.date.issued
2021-07
dc.identifier.uri
http://hdl.handle.net/20.500.11850/504034
dc.identifier.doi
10.3929/ethz-b-000504034
dc.description.abstract
We introduce MemSum (Multi-step Episodic Markov decision process extractive SUMmarizer), a reinforcement-learning-based extractive summarizer enriched at any given time step with information on the current extraction history. Similar to previous models in this vein, MemSum iteratively selects sentences into the summary. Our innovation is in considering a broader information set when summarizing that would intuitively also be used by humans in this task: 1) the text content of the sentence, 2) the global text context of the rest of the document, and 3) the extraction history consisting of the set of sentences that have already been extracted. With a lightweight architecture, MemSum nonetheless obtains state-of-the-art test-set performance (ROUGE score) on long document datasets (PubMed, arXiv, and GovReport). Supporting analysis demonstrates that the added awareness of extraction history gives MemSum robustness against redundancy in the source document.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Center for Law & Economics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Automatic text summarization
en_US
dc.subject
Text summarization methods
en_US
dc.subject
Markov decision processes
en_US
dc.title
MemSum: Extractive Summarization of Long Documents using Multi-Step Episodic Markov Decision Processes
en_US
dc.type
Working Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
Center for Law & Economics Working Paper Series
ethz.journal.volume
2021
en_US
ethz.journal.issue
12
en_US
ethz.pages.start
2107.08929
en_US
ethz.size
14 p.
en_US
ethz.identifier.arxiv
2107.08929
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02045 - Dep. Geistes-, Sozial- u. Staatswiss. / Dep. of Humanities, Social and Pol.Sc.::09627 - Ash, Elliott / Ash, Elliott
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02045 - Dep. Geistes-, Sozial- u. Staatswiss. / Dep. of Humanities, Social and Pol.Sc.::09627 - Ash, Elliott / Ash, Elliott
en_US
ethz.relation.isIdenticalTo
handle/20.500.11850/529326
ethz.date.deposited
2021-09-03T13:27:47Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-06T04:49:28Z
ethz.rosetta.lastUpdated
2021-09-06T04:49:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=MemSum:%20Extractive%20Summarization%20of%20Long%20Documents%20using%20Multi-Step%20Episodic%20Markov%20Decision%20Processes&rft.jtitle=Center%20for%20Law%20&%20Economics%20Working%20Paper%20Series&rft.date=2021-07&rft.volume=2021&rft.issue=12&rft.spage=2107.08929&rft.au=Gu,%20Nianlong&Ash,%20Elliott&Hahnloser,%20Richard%20H.R.&rft.genre=preprint&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record