Show simple item record

dc.contributor.author
Dudaryeva, Oksana Y.
dc.contributor.author
Bucciarelli, Aurelia
dc.contributor.author
Bovone, Giovanni
dc.contributor.author
Huwyler, Florian
dc.contributor.author
Jaydev, Shibashish
dc.contributor.author
Broguiere, Nicolas
dc.contributor.author
al-Bayati, Marwa
dc.contributor.author
Lutolf, Marco
dc.contributor.author
Tibbitt, Mark W.
dc.date.accessioned
2022-01-14T09:53:17Z
dc.date.available
2021-10-05T06:26:29Z
dc.date.available
2021-10-15T15:56:34Z
dc.date.available
2022-01-14T09:53:17Z
dc.date.issued
2021-12-22
dc.identifier.issn
1616-3028
dc.identifier.issn
1616-301X
dc.identifier.other
10.1002/adfm.202104098
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/508238
dc.identifier.doi
10.3929/ethz-b-000508238
dc.description.abstract
Biophysical properties of the cellular microenvironment, including stiffness and geometry, have been shown to influence cell function. Recent findings have implicated 3D confinement as an important regulator of cell behavior. The understanding of how mechanical signals direct cell function is based primarily on 2D studies. To investigate how the extent of 3D confinement affects cell function, a single cell culture platform is fabricated with geometrically defined and fully enclosed microwells and it is applied to investigate how niche volume and stiffness affect human mesenchymal stem cells (hMSC) life and death. The viability and proliferation of hMSCs in confined 3D microniches are compared with unconfined cells in 2D. Confinement biases hMSC viability and proliferation, and this influence depends on the niche volume and stiffness. The rate of cell death increases and proliferation markedly decreases upon 3D confinement. The observed differences in hMSC behavior are correlated to changes in nuclear morphology and YES-associated protein (YAP) localization. In smaller 3D microniches, hMSCs display smaller and more rounded nuclei and primarily cytoplasmic YAP localization, indicating reduced mechanical activation upon confinement. Interestingly, these effects scale with the extent of 3D confinement. These results demonstrate that the extent of confinement in 3D can be an important regulator of cell function.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
3D niche
en_US
dc.subject
confinement
en_US
dc.subject
human mesenchymal stem cells
en_US
dc.subject
proliferation
en_US
dc.subject
single cell culture
en_US
dc.title
3D Confinement Regulates Cell Life and Death
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2021-09-24
ethz.journal.title
Advanced Functional Materials
ethz.journal.volume
31
en_US
ethz.journal.issue
52
en_US
ethz.journal.abbreviated
Adv. Funct. Mater.
ethz.pages.start
2104098
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Weinheim
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09472 - Tibbitt, Mark / Tibbitt, Mark
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09472 - Tibbitt, Mark / Tibbitt, Mark
ethz.date.deposited
2021-10-05T06:27:30Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-14T09:53:23Z
ethz.rosetta.lastUpdated
2024-02-02T16:00:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=3D%20Confinement%20Regulates%20Cell%20Life%20and%20Death&rft.jtitle=Advanced%20Functional%20Materials&rft.date=2021-12-22&rft.volume=31&rft.issue=52&rft.spage=2104098&rft.issn=1616-3028&1616-301X&rft.au=Dudaryeva,%20Oksana%20Y.&Bucciarelli,%20Aurelia&Bovone,%20Giovanni&Huwyler,%20Florian&Jaydev,%20Shibashish&rft.genre=article&rft_id=info:doi/10.1002/adfm.202104098&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record