Show simple item record

dc.contributor.author
Gisler, Joy
dc.contributor.author
Schneider, Johannes
dc.contributor.author
Handali, Joshua
dc.contributor.author
Holzwarth, Valentin
dc.contributor.author
Hirt, Christian
dc.contributor.author
Fuhl, Wolfgang
dc.contributor.author
vom Brocke, Jan
dc.contributor.author
Kunz, Andreas
dc.date.accessioned
2022-01-06T07:19:44Z
dc.date.available
2021-10-14T11:52:00Z
dc.date.available
2021-10-14T12:05:16Z
dc.date.available
2022-01-06T07:19:44Z
dc.date.issued
2021-10-04
dc.identifier.isbn
978-1-6654-1298-8
en_US
dc.identifier.isbn
978-1-6654-1299-5
en_US
dc.identifier.other
10.1109/ISMAR-Adjunct54149.2021.00064
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/509751
dc.identifier.doi
10.3929/ethz-b-000509751
dc.description.abstract
An essential aspect in the evaluation of Virtual Training Environments (VTEs) is the assessment of users’ training success, preferably in real-time, e.g. to continuously adapt the training or to provide feedback. To achieve this, leveraging users’ behavioral data has been shown to be a valid option. Behavioral data include sensor data from eye trackers, head-mounted displays, and hand-held controllers, as well as semantic data like a trainee’s focus on objects of interest within a VTE. While prior works investigated the relevance of mostly one and in rare cases two behavioral data sources at a time, we investigate the benefits of the combination of three data sources. We conduct a user study with 48 participants in an industrial training task to find correlations between training success and measures extracted from different behavioral data sources. We show that all individual data sources, i.e. eye gaze position and head movement, as well as duration of objects in focus are related to training success. Moreover, we find that simultaneously considering multiple behavioral data sources allows to better explain training success. Further, we show that training outcomes can already be predicted significantly better than chance by only recording trainees for parts of their training. This could be used for dynamically adapting a VTE’s difficulty. Finally, our work further contributes to reaching the long-term goal of substituting traditional evaluation of training success (e.g. through pen-and-paper tests) with an automated approach.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Virtual Reality (VR)
en_US
dc.subject
Attention Guidance
en_US
dc.title
Indicators of Training Success in Virtual Reality Using Head and Eye Movements
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-11-13
ethz.book.title
2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)
en_US
ethz.pages.start
285
en_US
ethz.pages.end
280
en_US
ethz.size
6 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
IEEE International Symposium on Mixed and Augmented Reality
en_US
ethz.event.location
Bari, Italy
en_US
ethz.event.date
October 4–8, 2021
en_US
ethz.notes
Conference lecture held on October 6, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
en_US
ethz.date.deposited
2021-10-14T11:52:05Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-06T07:19:50Z
ethz.rosetta.lastUpdated
2024-02-02T15:52:26Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Indicators%20of%20Training%20Success%20in%20Virtual%20Reality%20Using%20Head%20and%20Eye%20Movements&rft.date=2021-10-04&rft.spage=285&rft.epage=280&rft.au=Gisler,%20Joy&Schneider,%20Johannes&Handali,%20Joshua&Holzwarth,%20Valentin&Hirt,%20Christian&rft.isbn=978-1-6654-1298-8&978-1-6654-1299-5&rft.genre=proceeding&rft_id=info:doi/10.1109/ISMAR-Adjunct54149.2021.00064&rft.btitle=2021%20IEEE%20International%20Symposium%20on%20Mixed%20and%20Augmented%20Reality%20Adjunct%20(ISMAR-Adjunct)
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record