Rock slope temperature evolution and micrometer-scale deformation at a retreating glacier margin
dc.contributor.author
Hugentobler, Marc
dc.contributor.author
Aaron, Jordan
dc.contributor.author
Loew, Simon
dc.date.accessioned
2021-10-20T06:41:43Z
dc.date.available
2021-10-18T10:24:17Z
dc.date.available
2021-10-20T06:41:43Z
dc.date.issued
2021-04-07
dc.identifier.other
10.1002/essoar.10506711.1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/510375
dc.identifier.doi
10.3929/ethz-b-000510375
dc.description.abstract
In deglaciating environments, rock mass weakening and potential formation of rock slope instabilities is driven by long-term and seasonal changes in thermal- and hydraulic boundary conditions, combined with unloading due to ice melting. However, in-situ observations are rare. In this study, we present new monitoring data from three highly instrumented boreholes, and numerical simulations to investigate rock slope temperature evolution and micrometer-scale deformation during deglaciation. Our results show that the subsurface temperatures are adjusting to a new, warmer surface temperature following ice retreat. Heat conduction is identified as the dominant heat transfer process at sites with intact rock. Observed nonconductive processes are related to groundwater exchange with cold subglacial water, snowmelt infiltration, or creek water infiltration. Our strain data shows that annual surface temperature cycles cause thermoelastic deformation that dominate the strain signals in the shallow thermally active layer at our stable rock slope locations. At deeper sensors, reversible strain signals correlating with pore pressure fluctuations dominate. Irreversible deformation, which we relate with progressive rock mass damage, occurs as short-term (hours to weeks) strain events and as slower, continuous strain trends. The majority of the short-term irreversible strain events coincides with precipitation events or pore pressure changes. Longer-term trends in the strain time series and a minority of short-term strain events cannot directly be related to any of the investigated drivers, but changes of glacial loading and fatigue processes are considered as potential causes.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ESSOAr
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Subsurface temperature evolution
en_US
dc.subject
Progressive rock mass damage
en_US
dc.subject
Paraglacial rock slope evolution
en_US
dc.subject
Borehole monitoring
en_US
dc.subject
Rock slope deformation
en_US
dc.title
Rock slope temperature evolution and micrometer-scale deformation at a retreating glacier margin
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
ESS Open Archive
ethz.size
47 p.
en_US
ethz.grant
Paraglacial Rock Slope Mechanics (Phase III)
en_US
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erd- und Planetenwissenschaften / Dep. of Earth and Planetary Sciences::02704 - Geologisches Institut / Geological Institute::03465 - Löw, Simon (emeritus) / Löw, Simon (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erd- und Planetenwissenschaften / Dep. of Earth and Planetary Sciences::02704 - Geologisches Institut / Geological Institute::03465 - Löw, Simon (emeritus) / Löw, Simon (emeritus)
en_US
ethz.grant.agreementno
172492
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isPreviousVersionOf
10.3929/ethz-b-000515454
ethz.date.deposited
2021-10-18T10:24:26Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-10-20T06:41:49Z
ethz.rosetta.lastUpdated
2025-02-14T00:12:14Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Rock%20slope%20temperature%20evolution%20and%20micrometer-scale%20deformation%20at%20a%20retreating%20glacier%20margin&rft.jtitle=ESS%20Open%20Archive&rft.date=2021-04-07&rft.au=Hugentobler,%20Marc&Aaron,%20Jordan&Loew,%20Simon&rft.genre=preprint&rft_id=info:doi/10.1002/essoar.10506711.1&
Files in this item
Publication type
-
Working Paper [6112]