Metadata only
Datum
2021-09Typ
- Journal Article
ETH Bibliographie
yes
Altmetrics
Abstract
For E ⊂ Fqd, let Δ(E) denote the distance set determined by pairs of points in E. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if E, F ⊂ Fqdare subsets with |E|·|F| >> qd+1/3, then |Δ(E) + Δ(F)|>q/2. They also proved that the threshold qd+1/3 is sharp when |E|=|F|. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal L2 restriction theorem for the sphere of zero radius. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Proceedings of the Steklov Institute of MathematicsBand
Seiten / Artikelnummer
Verlag
InterperiodicaOrganisationseinheit
03457 - Welzl, Emo / Welzl, Emo
Förderung
191067 - Erdos-Falconer Distance Conjecture and Related Topics (SNF)
ETH Bibliographie
yes
Altmetrics