Show simple item record

dc.contributor.author
Cheong, Daewoong
dc.contributor.author
Koh, Doowon
dc.contributor.author
Pham, Thang
dc.date.accessioned
2021-10-26T12:57:59Z
dc.date.available
2021-10-21T03:27:13Z
dc.date.available
2021-10-26T12:57:59Z
dc.date.issued
2021-09
dc.identifier.issn
0081-5438
dc.identifier.issn
0568-6407
dc.identifier.other
10.1134/S0081543821040131
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/510860
dc.description.abstract
For E ⊂ Fqd, let Δ(E) denote the distance set determined by pairs of points in E. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if E, F ⊂ Fqdare subsets with |E|·|F| >> qd+1/3, then |Δ(E) + Δ(F)|>q/2. They also proved that the threshold qd+1/3 is sharp when |E|=|F|. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal L2 restriction theorem for the sphere of zero radius.
en_US
dc.language.iso
en
en_US
dc.publisher
Interperiodica
en_US
dc.title
An Asymmetric Bound for Sum of Distance Sets
en_US
dc.type
Journal Article
dc.date.published
2021-10-08
ethz.journal.title
Proceedings of the Steklov Institute of Mathematics
ethz.journal.volume
314
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Proc. Steklov Inst. Math.
ethz.pages.start
279
en_US
ethz.pages.end
289
en_US
ethz.grant
Erdos-Falconer Distance Conjecture and Related Topics
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Birmingham, AL
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03457 - Welzl, Emo / Welzl, Emo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03457 - Welzl, Emo / Welzl, Emo
ethz.grant.agreementno
191067
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Rückkehr CH Postdoc.Mobility (bis 2020)
ethz.date.deposited
2021-10-21T03:27:21Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-10-26T12:58:09Z
ethz.rosetta.lastUpdated
2023-02-06T22:44:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20Asymmetric%20Bound%20for%20Sum%20of%20Distance%20Sets&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.date=2021-09&rft.volume=314&rft.issue=1&rft.spage=279&rft.epage=289&rft.issn=0081-5438&0568-6407&rft.au=Cheong,%20Daewoong&Koh,%20Doowon&Pham,%20Thang&rft.genre=article&rft_id=info:doi/10.1134/S0081543821040131&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record