Metadata only
Date
2021-10Type
- Report
ETH Bibliography
yes
Altmetrics
Abstract
We propose a novel method called Long Expressive Memory (LEM) for learning long-term sequential dependencies. LEM is gradient-based, it can efficiently process sequential tasks with very long-term dependencies, and it is sufficiently expressive to be able to learn complicated input-output maps. To derive LEM, we consider a system of multiscale ordinary differential equations, as well as a suitable time-discretization of this system. For LEM, we derive rigorous bounds to show the mitigation of the exploding and vanishing gradients problem, a well-known challenge for gradient-based recurrent sequential learning methods. We also prove that LEM can approximate a large class of dynamical systems to high accuracy. Our empirical results, ranging from image and time-series classification through dynamical systems prediction to speech recognition and language modeling, demonstrate that LEM outperforms state-of-the-art recurrent neural networks, gated recurrent units, and long short-term memory models. Show more
Publication status
publishedExternal links
Journal / series
SAM Research ReportVolume
Publisher
Seminar for Applied Mathematics, ETH ZurichOrganisational unit
03851 - Mishra, Siddhartha / Mishra, Siddhartha
Funding
770880 - Computation and analysis of statistical solutions of fluid flow (EC)
Related publications and datasets
Is previous version of: http://hdl.handle.net/20.500.11850/590419
More
Show all metadata
ETH Bibliography
yes
Altmetrics