Deterministic Decremental SSSP and Approximate Min-Cost Flow in Almost-Linear Time
Metadata only
Date
2022Type
- Conference Paper
ETH Bibliography
yes
Altmetrics
Abstract
n the decremental single-source shortest paths problem, the goal is to maintain distances from a fixed source s to every vertex v in an m-edge graph undergoing edge deletions. In this paper, we conclude a long line of research on this problem by showing a near-optimal deterministic data structure that maintains (1 + E) -approximate distance estimates and runs in m1+o(1)total update time. Our result, in particular, removes the oblivious adversary assumption required by the previous breakthrough result by Henzinger et al. [FOCS'14], which leads to our second result: the first almost-linear time algorithm for (1 - E) -approximate min-cost flow in undirected graphs where capacities and costs can be taken over edges and vertices. Previously, algorithms for max flow with vertex capacities, or min-cost flow with any capacities required super-linear time. Our result essentially completes the picture for approximate flow in undirected graphs. The key technique of the first result is a novel framework that allows us to treat low-diameter graphs like expanders. This allows us to harness expander properties while bypassing shortcomings of expander decomposition, which almost all previous expander-based algorithms needed to deal with. For the second result, we break the notorious flow-decomposition barrier from the multiplicative-weight-update framework using randomization. Show more
Publication status
publishedExternal links
Book title
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)Pages / Article No.
Publisher
IEEEEvent
Subject
component; formatting; style; stylingOrganisational unit
02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science09687 - Kyng, Rasmus / Kyng, Rasmus
Notes
Conference lecture on February 10, 2022.More
Show all metadata
ETH Bibliography
yes
Altmetrics