Low-Power License Plate Detection and Recognition on a RISC-V Multi-Core MCU-Based Vision System
dc.contributor.author
Lamberti, Lorenzo
dc.contributor.author
Rusci, Manuele
dc.contributor.author
Fariselli, Marco
dc.contributor.author
Paci, Francesco
dc.contributor.author
Benini, Luca
dc.date.accessioned
2021-11-19T10:56:09Z
dc.date.available
2021-11-13T07:54:54Z
dc.date.available
2021-11-19T10:56:09Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9201-7
en_US
dc.identifier.other
10.1109/ISCAS51556.2021.9401730
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/515023
dc.description.abstract
In this paper, we present the first (to the best of our knowledge) demonstration of a low-power MCU-based edge device for Automatic License Plate Recognition (ALPR). The design leverages on a 9-core RISC-V processor, GAP8, coupled with a QVGA ultra-low-power greyscale imager. The proposed visual processing pipeline uses a multi-model inference approach based on SSDlite-MobilenetV2 for license plate detection and LPRNet for optical character recognition, reaching a 38.9% mAP score for the first task and a recognition rate of >99.13% for the latter on public datasets. On real-world data, the pipeline recognizes registration numbers when the size of LP crops is as small as 30×5 pixels. Thanks to the applied compression and optimization strategies, the multi-model inference (687 MMAC) achieves a throughput of 1.09 FPS at a power cost of 117 mW when running on GAP8. Our solution is the first MCU-class device embedding such a level of network complexity, resulting to be 73× more energy-efficient w.r.t. precedent mobile-class ALPR system featuring a Raspberry Pi3. The proposed design does not resort to any hardwired acceleration engines, thus retaining full flexibility for future algorithmic improvements. © 2021 IEEE
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Low-Power License Plate Detection and Recognition on a RISC-V Multi-Core MCU-Based Vision System
en_US
dc.type
Conference Paper
dc.date.published
2021-04-17
ethz.book.title
2021 IEEE International Symposium on Circuits and Systems (ISCAS)
en_US
ethz.pages.start
9401730
en_US
ethz.size
5 p.
en_US
ethz.event
IEEE International Symposium on Circuits and Systems (ISCAS 2021)
en_US
ethz.event.location
Daegu, South Korea
en_US
ethz.event.date
May 22-28, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
ethz.date.deposited
2021-11-13T07:56:53Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-11-19T10:56:16Z
ethz.rosetta.lastUpdated
2022-03-29T16:04:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Low-Power%20License%20Plate%20Detection%20and%20Recognition%20on%20a%20RISC-V%20Multi-Core%20MCU-Based%20Vision%20System&rft.date=2021&rft.spage=9401730&rft.au=Lamberti,%20Lorenzo&Rusci,%20Manuele&Fariselli,%20Marco&Paci,%20Francesco&Benini,%20Luca&rft.isbn=978-1-7281-9201-7&rft.genre=proceeding&rft_id=info:doi/10.1109/ISCAS51556.2021.9401730&rft.btitle=2021%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33039]