Rule-based optimal control for autonomous driving
dc.contributor.author
Xiao, Wei
dc.contributor.author
Mehdipour, Noushin
dc.contributor.author
Collin, Anne
dc.contributor.author
Bin-Nun, Amitai Y.
dc.contributor.author
Frazzoli, Emilio
dc.contributor.author
Duintjer Tebbens, Radboud
dc.contributor.author
Beta, Calin
dc.contributor.editor
Maggio, Martina
dc.contributor.editor
Weimer, James
dc.contributor.editor
Al Faruque, Mohammad
dc.contributor.editor
Oishi, Meeko
dc.date.accessioned
2022-01-31T14:54:00Z
dc.date.available
2021-11-15T09:25:50Z
dc.date.available
2021-11-15T14:37:11Z
dc.date.available
2022-01-31T14:54:00Z
dc.date.issued
2021-05
dc.identifier.isbn
978-1-4503-8353-0
en_US
dc.identifier.other
10.1145/3450267.3450542
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/515195
dc.description.abstract
We develop optimal control strategies for Autonomous Vehicles (AVs) that are required to meet complex specifications imposed by traffic laws and cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and specify their priorities by constructing a priority structure, called Total ORder over eQuivalence classes (TORQ). We propose a recursive framework, in
which the satisfaction of the rules in the priority structure are iteratively relaxed based on their priorities. Central to this framework is an optimal control problem, where convergence to desired states is achieved using Control Lyapunov Functions (CLFs), and safety is enforced through Control Barrier Functions (CBFs). We also show how the proposed framework can be used for after-the-fact, pass/fail evaluation of trajectories - a given trajectory is rejected if we can find a controller producing a trajectory that leads to less violation of the rule priority structure. We present case studies with multiple driving scenarios to demonstrate the effectiveness of the proposed framework.
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
en_US
dc.subject
Autonomous driving
en_US
dc.subject
Lyapunov methods
en_US
dc.subject
Safety
en_US
dc.subject
Priority structure
en_US
dc.title
Rule-based optimal control for autonomous driving
en_US
dc.type
Conference Paper
dc.date.published
2021-05-19
ethz.book.title
Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems (ICCPS '21)
en_US
ethz.pages.start
143
en_US
ethz.pages.end
154
en_US
ethz.event
12th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
May 19-21, 2021
en_US
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.date.deposited
2021-11-15T09:25:59Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-11-15T14:37:18Z
ethz.rosetta.lastUpdated
2022-03-29T18:25:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Rule-based%20optimal%20control%20for%20autonomous%20driving&rft.date=2021-05&rft.spage=143&rft.epage=154&rft.au=Xiao,%20Wei&Mehdipour,%20Noushin&Collin,%20Anne&Bin-Nun,%20Amitai%20Y.&Frazzoli,%20Emilio&rft.isbn=978-1-4503-8353-0&rft.genre=proceeding&rft_id=info:doi/10.1145/3450267.3450542&rft.btitle=Proceedings%20of%20the%20ACM/IEEE%2012th%20International%20Conference%20on%20Cyber-Physical%20Systems%20(ICCPS%20'21)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [36924]