Zur Kurzanzeige

dc.contributor.author
Haj-Yahya, Jawad
dc.contributor.author
Park, Jisung
dc.contributor.author
Bera, Rahul
dc.contributor.author
Gómez Luna, Juan
dc.contributor.author
Rotem, Efraim
dc.contributor.author
Shahroodi, Taha
dc.contributor.author
Kim, Jeremie
dc.contributor.author
Mutlu, Onur
dc.date.accessioned
2021-11-25T09:57:19Z
dc.date.available
2021-11-18T04:54:03Z
dc.date.available
2021-11-25T09:57:19Z
dc.date.issued
2021
dc.identifier.isbn
978-1-4503-8557-2
en_US
dc.identifier.other
10.1145/3466752.3480085
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/515702
dc.description.abstract
Conventional planar video streaming is the most popular application in mobile systems. The rapid growth of 360. video content and virtual reality (VR) devices is accelerating the adoption of VR video streaming. Unfortunately, video streaming consumes significant system energy due to high power consumption of major system components (e.g., DRAM, display interfaces, and display panel) involved in the video streaming process. For example, in conventional planar video streaming, the video decoder (in the processor) decodes video frames and stores them in the DRAM main memory before the display controller (in the processor) transfers decoded frames from DRAM to the display panel. This system architecture causes large amount of data movement to/from DRAM as well as high DRAM bandwidth usage. As a result, DRAM by itself consumes more than 30% of the video streaming energy. We propose BurstLink, a novel system-level technique that improves the energy efficiency of planar and VR video streaming. BurstLink is based on two key ideas. First, BurstLink directly transfers a decoded video frame from the video decoder or the GPU to the display panel, completely bypassing the host DRAM. To this end, we extend the display panel with a double remote frame buffer (DRFB) instead of DRAM fs double frame buffer so that the system can directly update the DRFB with a new frame while updating the display panel fs pixels with the current frame stored in the DRFB. Second, BurstLink transfers a complete decoded frame to the display panel in a single burst, using the maximum bandwidth of modern display interfaces. Unlike conventional systems where the frame transfer rate is limited by the pixel-update throughput of the display panel, BurstLink can always take full advantage of the high bandwidth of modern display interfaces by decoupling the frame transfer from the pixel update as enabled by the DRFB. This direct and burst frame transfer of capability BurstLink significantly reduces energy consumption of video display by 1) reducing accesses to DRAM, 2) increasing system fs residency at idle power states, and 3) enabling temporal power gating of several system components after quickly transferring each frame into the DRFB. BurstLink can be easily implemented in modern mobile systems with minimal changes to the video display pipeline. We evaluate BurstLink using an analytical power model that we rigorously validate on an Intel Skylake mobile system. Our evaluation shows that BurstLink reduces system energy consumption for 4K planar and VR video streaming by 41% and 33%, respectively. BurstLink provides an even higher energy reduction in future video streaming systems with higher display resolutions and/or display refresh rates.
en_US
dc.language.iso
en
en_US
dc.publisher
ACM
en_US
dc.subject
video streaming
en_US
dc.subject
video display
en_US
dc.subject
display panels
en_US
dc.subject
energy efficiency
en_US
dc.subject
data movement
en_US
dc.subject
mobile systems
en_US
dc.subject
memory
en_US
dc.subject
DRAM
en_US
dc.title
BurstLink: Techniques for Energy-Efficient Video Display for Conventional and Virtual Reality Systems
en_US
dc.type
Conference Paper
dc.date.published
2021-10-18
ethz.book.title
MICRO '21: MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
en_US
ethz.pages.start
155
en_US
ethz.pages.end
169
en_US
ethz.event
54th IEEE/ACM International Symposium on Microarchitecture (MICRO 2021)
en_US
ethz.event.location
online
en_US
ethz.event.date
October 18-22, 2021
en_US
ethz.identifier.scopus
ethz.publication.place
New York
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
ethz.date.deposited
2021-11-18T04:54:16Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-11-25T09:57:26Z
ethz.rosetta.lastUpdated
2022-03-29T16:08:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=BurstLink:%20Techniques%20for%20Energy-Efficient%20Video%20Display%20for%20Conventional%20and%20Virtual%20Reality%20Systems&rft.date=2021&rft.spage=155&rft.epage=169&rft.au=Haj-Yahya,%20Jawad&Park,%20Jisung&Bera,%20Rahul&G%C3%B3mez%20Luna,%20Juan&Rotem,%20Efraim&rft.isbn=978-1-4503-8557-2&rft.genre=proceeding&rft_id=info:doi/10.1145/3466752.3480085&rft.btitle=MICRO%20'21:%20MICRO-54:%2054th%20Annual%20IEEE/ACM%20International%20Symposium%20on%20Microarchitecture
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige