Learn to Path: Using neural networks to predict Dubins path characteristics for aerial vehicles in wind
dc.contributor.author
Phillips, Trevor
dc.contributor.author
Stölzle, Maximilian
dc.contributor.author
Turricelli, Erick
dc.contributor.author
Achermann, Florian
dc.contributor.author
Lawrance, Nicholas
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Chung, Jen Jen
dc.date.accessioned
2021-11-18T08:43:06Z
dc.date.available
2021-11-18T08:33:18Z
dc.date.available
2021-11-18T08:43:06Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9077-8
en_US
dc.identifier.isbn
978-1-7281-9078-5
en_US
dc.identifier.other
10.1109/icra48506.2021.9560879
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/515766
dc.identifier.doi
10.3929/ethz-b-000515766
dc.description.abstract
For asymptotically optimal sampling-based path planners such as RRT*, path quality improves as the number of samples added to the motion tree increases. However, each additional sample requires a nearest-neighbor search. Calculating state transition costs can be particularly difficult in cases with complex dynamics such as aerial vehicles in non-isotropic cost fields like wind. Computationally costly nearest neighbor searches increase the time required to add new samples to the search tree, thereby reducing the likelihood of finding low-cost paths in a given computational time. In this paper, we propose the use of a lightweight neural network to approximate nearest neighbor cost calculations. The network approach uses a low-dimensional encoding of the cost space along with a start and goal query pair and returns an estimate of the path cost that can be used for nearest neighbor and path validity estimation. We demonstrate our method for a Dubins airplane model in a 3D wind field and show that the network method achieves equivalent path lengths as an existing iterative solver 32% faster and, when given the same search time, up to 10.8% shorter.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Learn to Path: Using neural networks to predict Dubins path characteristics for aerial vehicles in wind
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-10-18
ethz.book.title
2021 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
1073
en_US
ethz.pages.end
1079
en_US
ethz.size
7 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
IEEE International Conference on Robotics and Automation (ICRA 2021)
en_US
ethz.event.location
Xi'an, China
en_US
ethz.event.date
May 30 – June 5, 2021
en_US
ethz.notes
Conference lecture held on June 1, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.date.deposited
2021-11-18T08:33:25Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-11-18T08:43:14Z
ethz.rosetta.lastUpdated
2023-02-06T23:20:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learn%20to%20Path:%20Using%20neural%20networks%20to%20predict%20Dubins%20path%20characteristics%20for%20aerial%20vehicles%20in%20wind&rft.date=2021&rft.spage=1073&rft.epage=1079&rft.au=Phillips,%20Trevor&St%C3%B6lzle,%20Maximilian&Turricelli,%20Erick&Achermann,%20Florian&Lawrance,%20Nicholas&rft.isbn=978-1-7281-9077-8&978-1-7281-9078-5&rft.genre=proceeding&rft_id=info:doi/10.1109/icra48506.2021.9560879&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Dateien zu diesem Eintrag
Publikationstyp
-
Conference Paper [33076]