NavRep: Unsupervised Representations for Reinforcement Learning of Robot Navigation in Dynamic Human Environments
dc.contributor.author
Dugas, Daniel
dc.contributor.author
Nieto, Juan
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Chung, Jen Jen
dc.date.accessioned
2021-11-18T09:06:42Z
dc.date.available
2021-11-18T08:39:33Z
dc.date.available
2021-11-18T09:06:42Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9077-8
en_US
dc.identifier.isbn
978-1-7281-9078-5
en_US
dc.identifier.other
10.1109/icra48506.2021.9560951
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/515772
dc.identifier.doi
10.3929/ethz-b-000515772
dc.description.abstract
Robot navigation is a task where reinforcement learning approaches are still unable to compete with traditional path planning. State-of-the-art methods differ in small ways, and do not all provide reproducible, openly available implementations. This makes comparing methods a challenge. Recent research has shown that unsupervised learning methods can scale impressively, and be leveraged to solve difficult problems. In this work, we design ways in which unsupervised learning can be used to assist reinforcement learning for robot navigation. We train two end-to-end, and 18 unsupervised-learning-based architectures, and compare them, along with existing approaches, in unseen test cases. We demonstrate our approach working on a real life robot. Our results show that unsupervised learning methods are competitive with end-to-end methods. We also highlight the importance of various components such as input representation, predictive unsupervised learning, and latent features. We make all our models publicly available, as well as training and testing environments, and tools 1 . This release also includes OpenAI-gym-compatible environments designed to emulate the training conditions described by other papers, with as much fidelity as possible. Our hope is that this helps in bringing together the field of RL for robot navigation, and allows meaningful comparisons across state-of-the-art methods.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
NavRep: Unsupervised Representations for Reinforcement Learning of Robot Navigation in Dynamic Human Environments
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-10-18
ethz.book.title
2021 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
7829
en_US
ethz.pages.end
7835
en_US
ethz.size
7 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
IEEE International Conference on Robotics and Automation (ICRA 2021)
en_US
ethz.event.location
Xi'an, China
en_US
ethz.event.date
May 30 – June 5, 2021
en_US
ethz.notes
Conference lecture held on June 1, 2021
en_US
ethz.grant
CROWDBOT
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.grant.agreementno
779942
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2021-11-18T08:39:38Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-11-18T09:06:50Z
ethz.rosetta.lastUpdated
2023-02-06T23:20:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=NavRep:%20Unsupervised%20Representations%20for%20Reinforcement%20Learning%20of%20Robot%20Navigation%20in%20Dynamic%20Human%20Environments&rft.date=2021&rft.spage=7829&rft.epage=7835&rft.au=Dugas,%20Daniel&Nieto,%20Juan&Siegwart,%20Roland&Chung,%20Jen%20Jen&rft.isbn=978-1-7281-9077-8&978-1-7281-9078-5&rft.genre=proceeding&rft_id=info:doi/10.1109/icra48506.2021.9560951&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Files in this item
Publication type
-
Conference Paper [33146]