Deep Solution Operators for Variational Inequalities via Proximal Neural Networks
dc.contributor.author
Schwab, Christoph
dc.contributor.author
Stein, Andreas
dc.date.accessioned
2021-11-25T14:35:45Z
dc.date.available
2021-11-25T10:41:36Z
dc.date.available
2021-11-25T14:35:45Z
dc.date.issued
2021-11
dc.identifier.uri
http://hdl.handle.net/20.500.11850/516843
dc.description.abstract
We introduce ProxNet, a collection of deep neural networks with ReLU activation which emulate numerical solution operators of variational inequalities (VIs). We analyze the expression rates of ProxNets in emulating solution operators for variational inequality problems posed on closed, convex cones in separable Hilbert spaces, covering the classical contact problems in mechanics, and early exercise problems as arise, e.g. in valuation of American-style contracts in Black-Scholes financial market models. In the finite-dimensional setting, the VIs reduce to matrix VIs in Euclidean space, and ProxNets emulate classical projected matrix iterations, such as PSOR and semi-smooth Newton iterations which are realized as primal-dual active set strategies, which we encode in the novel PDASNet.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.title
Deep Solution Operators for Variational Inequalities via Proximal Neural Networks
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2021-37
en_US
ethz.size
32 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=979
ethz.date.deposited
2021-11-25T10:41:43Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=979
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-11-25T14:35:55Z
ethz.rosetta.lastUpdated
2021-11-25T14:35:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20Solution%20Operators%20for%20Variational%20Inequalities%20via%20Proximal%20Neural%20Networks&rft.jtitle=SAM%20Research%20Report&rft.date=2021-11&rft.volume=2021-37&rft.au=Schwab,%20Christoph&Stein,%20Andreas&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6866]