Metadata only
Date
2021Type
- Conference Paper
Abstract
We present a novel online depth map fusion approach that learns depth map aggregation in a latent feature space. While previous fusion methods use an explicit scene representation like signed distance functions (SDFs), we propose a learned feature representation for the fusion. The key idea is a separation between the scene representation used for the fusion and the output scene representation, via an additional translator network. Our neural network architecture consists of two main parts: a depth and feature fusion sub-network, which is followed by a translator sub-network to produce the final surface representation (e.g. TSDF) for visualization or other tasks. Our approach is an online process, handles high noise levels, and is particularly able to deal with gross outliers common for photometric stereobased depth maps. Experiments on real and synthetic data demonstrate improved results compared to the state of the art, especially in challenging scenarios with large amounts of noise and outliers. The source code will be made available at https://github.com/weders/NeuralFusion. Show more
Publication status
publishedExternal links
Book title
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)Pages / Article No.
Publisher
IEEEEvent
Organisational unit
03766 - Pollefeys, Marc / Pollefeys, Marc
More
Show all metadata