Learning Target Candidate Association To Keep Track of What Not To Track
dc.contributor.author
Mayer, Christoph
dc.contributor.author
Danelljan, Martin
dc.contributor.author
Paudel, Danda Pani
dc.contributor.author
Van Gool, Luc
dc.date.accessioned
2022-06-30T09:05:50Z
dc.date.available
2021-11-26T10:33:25Z
dc.date.available
2021-11-30T08:03:53Z
dc.date.available
2022-06-21T12:59:45Z
dc.date.available
2022-06-30T09:05:50Z
dc.date.issued
2021
dc.identifier.isbn
978-1-6654-2812-5
en_US
dc.identifier.isbn
978-1-6654-2813-2
en_US
dc.identifier.other
10.1109/ICCV48922.2021.01319
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/517106
dc.description.abstract
The presence of objects that are confusingly similar to the tracked target, poses a fundamental challenge in appearance-based visual tracking. Such distractor objects are easily misclassified as the target itself, leading to eventual tracking failure. While most methods strive to suppress distractors through more powerful appearance models, we take an alternative approach.We propose to keep track of distractor objects in order to continue tracking the target. To this end, we introduce a learned association network, allowing us to propagate the identities of all target candidates from frame-to-frame. To tackle the problem of lacking ground-truth correspondences between distractor objects in visual tracking, we propose a training strategy that combines partial annotations with self-supervision. We conduct comprehensive experimental validation and analysis of our approach on several challenging datasets. Our tracker sets a new state-of-the-art on six benchmarks, achieving an AUC score of 67.1% on LaSOT [21] and a +5.8% absolute gain on the OxUvA long-term dataset [41]. The code and trained models are available at https://github.com/visionml/pytracking
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Motion and tracking
en_US
dc.title
Learning Target Candidate Association To Keep Track of What Not To Track
en_US
dc.type
Conference Paper
dc.date.published
2022-02-28
ethz.book.title
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
en_US
ethz.pages.start
13444
en_US
ethz.pages.end
13454
en_US
ethz.event
18th International Conference on Computer Vision (ICCV 2021)
en_US
ethz.event.location
Online
ethz.event.date
October 11-17, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.date.deposited
2021-11-26T10:33:30Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-06-21T12:59:52Z
ethz.rosetta.lastUpdated
2025-02-14T02:31:08Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20Target%20Candidate%20Association%20To%20Keep%20Track%20of%20What%20Not%20To%20Track&rft.date=2021&rft.spage=13444&rft.epage=13454&rft.au=Mayer,%20Christoph&Danelljan,%20Martin&Paudel,%20Danda%20Pani&Van%20Gool,%20Luc&rft.isbn=978-1-6654-2812-5&978-1-6654-2813-2&rft.genre=proceeding&rft_id=info:doi/10.1109/ICCV48922.2021.01319&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [36764]