Zur Kurzanzeige

dc.contributor.author
Lang, Nico
dc.contributor.author
Kalischek, Nikolai
dc.contributor.author
Armston, John
dc.contributor.author
Schindler, Konrad
dc.contributor.author
Dubayah, Ralph
dc.contributor.author
Wegner, Jan Dirk
dc.date.accessioned
2021-12-06T12:56:42Z
dc.date.available
2021-11-27T04:10:47Z
dc.date.available
2021-12-06T12:56:42Z
dc.date.issued
2022-01
dc.identifier.issn
0034-4257
dc.identifier.other
10.1016/j.rse.2021.112760
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/517303
dc.identifier.doi
10.3929/ethz-b-000517303
dc.description.abstract
NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle. While GEDI is the first space-based LIDAR explicitly optimized to measure vertical forest structure predictive of aboveground biomass, the accurate interpretation of this vast amount of waveform data across the broad range of observational and environmental conditions is challenging. Here, we present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally. We propose a probabilistic deep learning approach based on an ensemble of deep convolutional neural networks (CNN) to avoid the explicit modelling of unknown effects, such as atmospheric noise. The model learns to extract robust features that generalize to unseen geographical regions and, in addition, yields reliable estimates of predictive uncertainty. Ultimately, the global canopy top height estimates produced by our model have an expected RMSE of 2.7 m with low bias.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
LiDAR
en_US
dc.subject
GEDI
en_US
dc.subject
Canopy height
en_US
dc.subject
Deep ensembles
en_US
dc.subject
Uncertainty
en_US
dc.subject
CNN
en_US
dc.subject
Bayesian deep learning
en_US
dc.title
Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-11-03
ethz.journal.title
Remote Sensing of Environment
ethz.journal.volume
268
en_US
ethz.journal.abbreviated
Remote Sens. Environ.
ethz.pages.start
112760
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.date.deposited
2021-11-27T04:11:40Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-12-06T12:56:49Z
ethz.rosetta.lastUpdated
2023-02-06T23:24:25Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Global%20canopy%20height%20regression%20and%20uncertainty%20estimation%20from%20GEDI%20LIDAR%20waveforms%20with%20deep%20ensembles&rft.jtitle=Remote%20Sensing%20of%20Environment&rft.date=2022-01&rft.volume=268&rft.spage=112760&rft.issn=0034-4257&rft.au=Lang,%20Nico&Kalischek,%20Nikolai&Armston,%20John&Schindler,%20Konrad&Dubayah,%20Ralph&rft.genre=article&rft_id=info:doi/10.1016/j.rse.2021.112760&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige