Show simple item record

dc.contributor.author
Bonati, Luigi
dc.contributor.supervisor
Parrinello, Michele
dc.contributor.supervisor
Dellago, Christoph
dc.contributor.supervisor
Schulthess, Thomas
dc.date.accessioned
2021-11-30T14:19:17Z
dc.date.available
2021-11-30T13:20:06Z
dc.date.available
2021-11-30T14:19:17Z
dc.date.issued
2021
dc.identifier.uri
http://hdl.handle.net/20.500.11850/517813
dc.identifier.doi
10.3929/ethz-b-000517813
dc.description.abstract
In this thesis, we extend the scope of atomistic simulations through a combination of machine learning and advanced sampling methods. Machine learning techniques, and notably neural networks, enable accurate representation of complex functions, while enhanced sampling can help collect the data needed to train the models. The synergy between these two techniques is particularly fruitful and allows taking a step forward in solving two major limitations of molecular dynamics: the interactions accuracy and the limited accessible time scales. Regarding the former, we show how it is possible to use advanced sampling techniques to construct reliable machine learning-based interatomic potentials to study rare events. We exploit this strategy to study the crystallization of silicon with quantum mechanical accuracy. Moreover, this approach paves the way for many other applications ranging from phase diagram calculations to chemical reactions. Concerning the time scale problem, we focus on the improvement of collective variables-based enhanced sampling techniques. These methods accelerate the occurrence of rare events by applying a bias potential to a set of parameters to alter the dynamics in a controlled manner. First, we employ a neural network to express the bias potential and optimize it by a variational scheme. This allows for a better representation of the free energy surfaces and the handling of several variables. In addition, we propose new methods for the extraction of such collective variables, which are crucial to the success of many advanced sampling procedures. We present a data-driven approach that constructs these variables from knowledge of metastable states alone. Finally, we devise a general procedure to accelerate enhanced sampling simulations by extracting collective variables corresponding to the slow modes that hinder convergence. This provides a way to systematically improve collective variables derived from physical intuition or statistical methods, and thus allows the applicability of enhanced sampling simulations to be extended.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
atomistic simulations
en_US
dc.subject
molecular dynamics
en_US
dc.subject
machine learning
en_US
dc.subject
enhanced sampling
en_US
dc.subject
collective variables
en_US
dc.title
Machine learning and enhanced sampling simulations
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-11-30
ethz.size
160 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.identifier.diss
27873
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::03575 - Parrinello, Michele (ehemalig) / Parrinello, Michele (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::03575 - Parrinello, Michele (ehemalig) / Parrinello, Michele (former)
en_US
ethz.date.deposited
2021-11-30T13:20:16Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-11-30T14:19:25Z
ethz.rosetta.lastUpdated
2023-02-06T23:22:51Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Machine%20learning%20and%20enhanced%20sampling%20simulations&rft.date=2021&rft.au=Bonati,%20Luigi&rft.genre=unknown&rft.btitle=Machine%20learning%20and%20enhanced%20sampling%20simulations
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record