Show simple item record

dc.contributor.author
Williams, Tony B.
dc.contributor.author
Burke, Christopher J.
dc.contributor.author
Nebe, Stephan
dc.contributor.author
Preuschoff, Kerstin
dc.contributor.author
Fehr, Ernst
dc.contributor.author
Tobler, Philippe N.
dc.date.accessioned
2021-12-02T09:01:25Z
dc.date.available
2021-12-02T09:01:25Z
dc.date.issued
2021-10-26
dc.identifier.issn
0027-8424
dc.identifier.issn
1091-6490
dc.identifier.other
10.1073/pnas.2106237118
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/518144
dc.identifier.doi
10.3929/ethz-b-000513758
dc.description.abstract
Decisions are based on the subjective values of choice options. However, subjective value is a theoretical construct and not directly observable. Strikingly, distinct theoretical models competing to explain how subjective values are assigned to choice options often make very similar behavioral predictions, which poses a major difficulty for establishing a mechanistic, biologically plausible explanation of decision-making based on behavior alone. Here, we demonstrate that model comparison at the neural level provides insights into model implementation during subjective value computation even though the distinct models parametrically identify common brain regions as computing subjective value. We show that frontal cortical regions implement a model based on the statistical distributions of available rewards, whereas intraparietal cortex and striatum compute subjective value signals according to a model based on distortions in the representations of probabilities. Thus, better mechanistic understanding of how cognitive processes are implemented arises from model comparisons at the neural level, over and above the traditional approach of comparing models at the behavioral level alone.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
National Academy of Sciences
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
risk taking
en_US
dc.subject
physiological foundation of behavior
en_US
dc.subject
neural valuation systems
en_US
dc.subject
neuroeconomics
en_US
dc.title
Testing models at the neural level reveals how the brain computes subjective value
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Proceedings of the National Academy of Sciences of the United States of America
ethz.journal.volume
118
en_US
ethz.journal.issue
43
en_US
ethz.journal.abbreviated
Proc Natl Acad Sci U S A
ethz.pages.start
e2106237118
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-11-05T08:13:50Z
ethz.source
SCOPUS
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-12-02T09:01:34Z
ethz.rosetta.lastUpdated
2022-03-29T16:22:25Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/513758
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/515008
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Testing%20models%20at%20the%20neural%20level%20reveals%20how%20the%20brain%20computes%20subjective%20value&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20of%20the%20United%20States%20of%20America&rft.date=2021-10-26&rft.volume=118&rft.issue=43&rft.spage=e2106237118&rft.issn=0027-8424&1091-6490&rft.au=Williams,%20Tony%20B.&Burke,%20Christopher%20J.&Nebe,%20Stephan&Preuschoff,%20Kerstin&Fehr,%20Ernst&rft.genre=article&rft_id=info:doi/10.1073/pnas.2106237118&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record