Multiscale analysis of surface roughness for the improvement of natural hazard modelling
dc.contributor.author
Brožová, Natalie
dc.contributor.author
Baggio, Tommaso
dc.contributor.author
D'Agostino, Vincenzo
dc.contributor.author
Bühler, Yves
dc.contributor.author
Bebi, Peter
dc.date.accessioned
2021-12-20T11:15:11Z
dc.date.available
2021-12-06T17:28:23Z
dc.date.available
2021-12-20T11:07:18Z
dc.date.available
2021-12-20T11:14:04Z
dc.date.available
2021-12-20T11:15:11Z
dc.date.issued
2021
dc.identifier.issn
1561-8633
dc.identifier.issn
1684-9981
dc.identifier.other
10.5194/nhess-21-3539-2021
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/518895
dc.identifier.doi
10.3929/ethz-b-000518895
dc.description.abstract
Surface roughness influences the release of avalanches and the dynamics of rockfall, avalanches and debris flow, but it is often not objectively implemented in natural hazard modelling. For two study areas, a treeline ecotone and a windthrow-disturbed forest landscape of the European Alps, we tested seven roughness algorithms using a photogrammetric digital surface model (DSM) with different resolutions (0.1, 0.5 and 1 m) and different moving-window areas (9, 25 and 49 m2). The vector ruggedness measure roughness algorithm performed best overall in distinguishing between roughness categories relevant for natural hazard modelling (including shrub forest, high forest, windthrow, snow and rocky land cover). The results with 1 m resolution were found to be suitable to distinguish between the roughness categories of interest, and the performance did not increase with higher resolution. In order to improve the roughness calculation along the hazard flow direction, we tested a directional roughness approach that improved the reliability of the surface roughness computation in channelised paths. We simulated avalanches on different elevation models (lidar-based) to observe a potential influence of a DSM and a digital terrain model (DTM) using the simulation tool Rapid Mass Movement Simulation (RAMMS). In this way, we accounted for the surface roughness based on a DSM instead of a DTM, which resulted in shorter simulated avalanche runouts by 16 %–27 % in the two study areas. Surface roughness above a treeline, which in comparison to the forest is not represented within the RAMMS, is therefore underestimated. We conclude that using DSM-based surface roughness in combination with DTM-based surface roughness and considering the directional roughness is promising for achieving better assessment of terrain in an alpine landscape, which might improve the natural hazard modelling.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-11-22
ethz.journal.title
Natural Hazards and Earth System Sciences
ethz.journal.volume
21
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Nat. Hazards Earth Syst. Sci.
ethz.pages.start
3539
en_US
ethz.pages.end
3562
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Göttingen
ethz.publication.status
published
en_US
ethz.relation.compiles
10.3929/ethz-b-000562703
ethz.date.deposited
2021-12-06T17:28:43Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-12-20T11:07:30Z
ethz.rosetta.lastUpdated
2024-02-02T15:37:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Multiscale%20analysis%20of%20surface%20roughness%20for%20the%20improvement%20of%20natural%20hazard%20modelling&rft.jtitle=Natural%20Hazards%20and%20Earth%20System%20Sciences&rft.date=2021&rft.volume=21&rft.issue=11&rft.spage=3539&rft.epage=3562&rft.issn=1561-8633&1684-9981&rft.au=Bro%C5%BEov%C3%A1,%20Natalie&Baggio,%20Tommaso&D'Agostino,%20Vincenzo&B%C3%BChler,%20Yves&Bebi,%20Peter&rft.genre=article&rft_id=info:doi/10.5194/nhess-21-3539-2021&
Files in this item
Publication type
-
Journal Article [130586]