How Does In Situ Stress Rotate Within a Fault Zone? Insights From Explicit Modeling of the Frictional, Fractured Rock Mass
dc.contributor.author
Zhang, Shihuai
dc.contributor.author
Ma, Xiaodong
dc.date.accessioned
2022-01-24T12:29:09Z
dc.date.available
2021-12-06T17:30:23Z
dc.date.available
2022-01-24T12:29:09Z
dc.date.issued
2021-11
dc.identifier.issn
2169-9313
dc.identifier.issn
0148-0227
dc.identifier.issn
2169-9356
dc.identifier.other
10.1029/2021JB022348
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/518923
dc.identifier.doi
10.3929/ethz-b-000518923
dc.description.abstract
We quantitatively investigate the spatial stress variations within the fault zone rock mass by explicitly incorporating macroscopic fractures into a 2D multilayer model. Based on elastic crack theory, we first derive a unified constitutive law for frictional fractures, featuring elastic and plastic shear deformation and shear-induced dilatancy. To honor the varying degrees of damage across fault zones, the multilayer model is composed of varying densities of randomly oriented frictional fractures from layer to layer. Under the boundary conditions specific to fault zones, the global mechanical response of each layer is quantitatively related to the local fracture deformation. We show that the major principal stress always rotates toward a limiting angle of 45° with respect to the fault plane and that the differential stress invariantly decreases with increasing fracture density. Approaching the fault core, the mean stress can either increase or decrease, depending on whether the fault strikes at a high (>45°) or low (<45°) angle to the regional major principal stress. Accumulated damage also results in the decrease and increase of the effective Young's modulus and Poisson's ratio of the fractured rock mass, respectively. Both the fracture properties and pore pressure affect the stress variations by modulating the fracture-associated deformation and the relative proportion of the elastic and plastic components. Our model illuminates the systematic variations of in situ stresses and effective elastic properties within the damage zone of a mature fault.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
fault zones
en_US
dc.subject
stress variations
en_US
dc.subject
elastic properties
en_US
dc.subject
fracture networks
en_US
dc.subject
frictional fractures
en_US
dc.subject
plasticity
en_US
dc.title
How Does In Situ Stress Rotate Within a Fault Zone? Insights From Explicit Modeling of the Frictional, Fractured Rock Mass
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2021-11-08
ethz.journal.title
Journal of Geophysical Research: Solid Earth
ethz.journal.volume
126
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
J. Geophys. Res. Solid Earth
ethz.pages.start
e2021JB022348
en_US
ethz.size
23 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
In situ stress variations near faults considering fault zone rock rheology - implications for reservoir stimulation and associated seismicity
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
182150
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-12-06T17:30:38Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-24T12:29:15Z
ethz.rosetta.lastUpdated
2022-03-29T17:47:16Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=How%20Does%20In%20Situ%20Stress%20Rotate%20Within%20a%20Fault%20Zone?%20Insights%20From%20Explicit%20Modeling%20of%20the%20Frictional,%20Fractured%20Rock%20Mass&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.date=2021-11&rft.volume=126&rft.issue=11&rft.spage=e2021JB022348&rft.issn=2169-9313&0148-0227&2169-9356&rft.au=Zhang,%20Shihuai&Ma,%20Xiaodong&rft.genre=article&rft_id=info:doi/10.1029/2021JB022348&
Files in this item
Publication type
-
Journal Article [132092]