Physics-aware deep learning for wind prediction over complex terrain
dc.contributor.author
Duthé, Gregory
dc.date.accessioned
2021-12-21T06:05:35Z
dc.date.available
2021-12-13T16:42:34Z
dc.date.available
2021-12-14T07:36:30Z
dc.date.available
2021-12-21T06:05:35Z
dc.date.issued
2019
dc.identifier.uri
http://hdl.handle.net/20.500.11850/520366
dc.identifier.doi
10.3929/ethz-b-000520366
dc.description.abstract
Rapidly computing the wind flow over complex terrain features is a challenging problem with many potential fields of application. Such domains include autonomous UAV path planning, naturally ventilated building design or even wind farm layout optimization. Traditionally, this requires performing Computational Fluid Dynamics (CFD) simulations, which are computationally expensive and time consuming. One recent approach has been to use deep convolutional neural networks as a data-driven simulation alternative which leverages CFD simulation results for training. Albeit fast and relatively accurate, this method does not, however, explicitly take into account flow properties. We believe that doing so could improve prediction accuracy, especially in previously under-predicted areas which usually exhibit strong shearing flows and large velocity magnitudes.
In this thesis, we investigate training deep neural networks with physics based loss functions and loss weighting methods, constructed to accentuate desirable flow features and properties. Furthermore, we explore other potential solutions, such as a physics informed adversarial approach, or using the recently proposed SPADE network which reported good spatial expressivity. Comparisons to baseline results are provided for all tested solutions, allowing us to select the combination of methods which provides the most accurate wind flow predictions. We show that training a network with a loss weighted with the velocity gradient magnitude results in a 5% decrease in maximum prediction error while retaining a comparable mean prediction error, when compared to the baseline approach.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich; EPFL
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
dc.title
Physics-aware deep learning for wind prediction over complex terrain
en_US
dc.type
Master Thesis
dc.rights.license
Creative Commons Attribution-ShareAlike 4.0 International
dc.date.published
2021-12-21
ethz.size
58 p.
en_US
ethz.publication.place
Zurich; Lausanne
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.date.deposited
2021-12-13T16:42:39Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-12-21T06:05:41Z
ethz.rosetta.lastUpdated
2022-03-29T16:49:05Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Physics-aware%20deep%20learning%20for%20wind%20prediction%20over%20complex%20terrain&rft.date=2019&rft.au=Duth%C3%A9,%20Gregory&rft.genre=unknown&rft.btitle=Physics-aware%20deep%20learning%20for%20wind%20prediction%20over%20complex%20terrain
Files in this item
Publication type
-
Master Thesis [2066]