Aeroelastic simulations of wind turbines affected by leading edge erosion: datasets for multivariate time-series classification
dc.contributor.author
Duthé, Gregory
dc.contributor.author
Abdallah, Imad
dc.contributor.author
Barber, Sarah
dc.contributor.author
Chatzi, Eleni
dc.date.accessioned
2023-03-14T10:21:37Z
dc.date.available
2021-12-13T16:54:22Z
dc.date.available
2022-08-11T13:17:33Z
dc.date.available
2022-08-11T13:47:01Z
dc.date.available
2023-03-14T10:21:37Z
dc.date.issued
2021-10-01
dc.identifier.other
10.5281/ZENODO.5544042
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/520371
dc.description.abstract
This repository contains data generated and used for classification in the publication:<br> Duthé, G.; Abdallah, I.; Barber, S.; Chatzi, E. Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades. <em>Energies</em> <strong>2021</strong>, <em>14</em>, 7262. https://doi.org/10.3390/en14217262 The data is generated via OpenFAST aeroelastic simulations coupled with a Non-Homogeneous Compound Poisson Process for degradation modelling and was used to train a Transformer deep learning model. One degradation run generates 1200 samples (1 sample every 6 days corresponding to a 20 year degradation period). In total 20 degradation runs are made available (20x1200 = 24'000 multivariate time-series samples). This repo can serve to benchmark long multivariate time-series classification algorithms. There are 10 possible classes of erosion severity. Each sample is a multivariate time-series of length 60'000, with the following 4 channels extracted from the simulations for a section at the tip of the blade: Inflow velocity Angle of attack Lift coefficient Drag coefficient Please see the publication above for more information as well as the included readme for information about the data and an example of how to load it into to PyTorch.
en_US
dc.language.iso
en
en_US
dc.publisher
CERN
en_US
dc.subject
wind turbine blade
en_US
dc.subject
leading edge erosion
en_US
dc.subject
dataset
en_US
dc.subject
aeroelastic simulations
en_US
dc.subject
deep learning
en_US
dc.title
Aeroelastic simulations of wind turbines affected by leading edge erosion: datasets for multivariate time-series classification
en_US
dc.type
Dataset
dc.date.published
2022-08-11
ethz.publication.place
Genève
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.date.deposited
2021-12-13T16:54:28Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-08-11T13:17:40Z
ethz.rosetta.lastUpdated
2024-02-02T20:59:28Z
ethz.rosetta.versionExported
true
ethz.repository
Zenodo
en_US
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Aeroelastic%20simulations%20of%20wind%20turbines%20affected%20by%20leading%20edge%20erosion:%20datasets%20for%20multivariate%20time-series%20classification&rft.date=2021-10-01&rft.au=Duth%C3%A9,%20Gregory&Abdallah,%20Imad&Barber,%20Sarah&Chatzi,%20Eleni&rft.genre=unknown&rft_id=info:doi/10.5281/ZENODO.5544042&rft.btitle=Aeroelastic%20simulations%20of%20wind%20turbines%20affected%20by%20leading%20edge%20erosion:%20datasets%20for%20multivariate%20time-series%20classification
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Dataset [1388]