GoSafe: Globally Optimal Safe Robot Learning
dc.contributor.author
Baumann, Dominik
dc.contributor.author
Marco, Alonso
dc.contributor.author
Turchetta, Matteo
dc.contributor.author
Trimpe, Sebastian
dc.date.accessioned
2021-12-21T09:35:25Z
dc.date.available
2021-12-20T15:45:27Z
dc.date.available
2021-12-21T09:35:25Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9077-8
en_US
dc.identifier.isbn
978-1-7281-9078-5
en_US
dc.identifier.other
10.1109/ICRA48506.2021.9560738
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/521575
dc.description.abstract
When learning policies for robotic systems from data, safety is a major concern, as violation of safety constraints may cause hardware damage. SafeOpt is an efficient Bayesian optimization (BO) algorithm that can learn policies while guaranteeing safety with high probability. However, its search space is limited to an initially given safe region. We extend this method by exploring outside the initial safe area while still guaranteeing safety with high probability. This is achieved by learning a set of initial conditions from which we can recover safely using a learned backup controller in case of a potential failure. We derive conditions for guaranteed convergence to the global optimum and validate GoSafe in hardware experiments.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
GoSafe: Globally Optimal Safe Robot Learning
en_US
dc.type
Conference Paper
dc.date.published
2021-10-18
ethz.book.title
2021 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
4452
en_US
ethz.pages.end
4458
en_US
ethz.event
2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
en_US
ethz.event.location
Xi'an, China
en_US
ethz.event.date
May 30 - June 5, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.date.deposited
2021-12-20T15:45:32Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-12-21T09:35:32Z
ethz.rosetta.lastUpdated
2023-02-06T23:34:51Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=GoSafe:%20Globally%20Optimal%20Safe%20Robot%20Learning&rft.date=2021&rft.spage=4452&rft.epage=4458&rft.au=Baumann,%20Dominik&Marco,%20Alonso&Turchetta,%20Matteo&Trimpe,%20Sebastian&rft.isbn=978-1-7281-9077-8&978-1-7281-9078-5&rft.genre=proceeding&rft_id=info:doi/10.1109/ICRA48506.2021.9560738&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35256]