Delayed deep learning for continuous-time dynamical systems
dc.contributor.author
Schlaginhaufen, Andreas
dc.contributor.supervisor
Dörfler, Florian
dc.contributor.supervisor
Krause, A.
dc.contributor.supervisor
Wenk, Philippe
dc.date.accessioned
2022-01-10T14:17:54Z
dc.date.available
2022-01-10T13:45:06Z
dc.date.available
2022-01-10T14:17:54Z
dc.date.issued
2021-01-29
dc.identifier.uri
http://hdl.handle.net/20.500.11850/524286
dc.identifier.doi
10.3929/ethz-b-000524286
dc.description.abstract
Bridging the gap between deep learning and dynamical systems, neural
ODEs are a promising approach to model continuous-time dynamical
systems. Motivated by state augmentation in discrete-time models, we
propose to extend the neural ODE framework to neural delay di erential
equations in order to naturally capture non-Markovian e ects such
as time delays or hysteresis, which are often encountered in real world
applications. We demonstrate the superior performance of neural delay
di erential equations on the task of modelling a partially observed
oscillator in comparison with augmented neural ODEs. Moreover, we
showcase robustness to observation noise, generalization over time and
initial conditions, and the expressive power on more complex dynamical
systems. Furthermore, a result on universal approximation is provided
and the connection to delay embeddings is discussed. In an exploratory
part, we discuss deep learning approaches for stability analysis
of time delay systems and propose to jointly learn a dynamics model and
a Lyapunov-Razumikhin function via discretization of the Razumikhin
condition. The applicability of this approach is demonstrated for the
task of stabilizing an inverted pendulum with delayed feedback control.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Delayed deep learning for continuous-time dynamical systems
en_US
dc.type
Master Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
74 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::09478 - Dörfler, Florian / Dörfler, Florian
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::09478 - Dörfler, Florian / Dörfler, Florian
en_US
ethz.date.deposited
2022-01-10T13:45:14Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-10T14:18:01Z
ethz.rosetta.lastUpdated
2022-03-29T17:26:44Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Delayed%20deep%20learning%20for%20continuous-time%20dynamical%20systems&rft.date=2021-01-29&rft.au=Schlaginhaufen,%20Andreas&rft.genre=unknown&rft.btitle=Delayed%20deep%20learning%20for%20continuous-time%20dynamical%20systems
Files in this item
Publication type
-
Master Thesis [2180]