Metadata only
Autor(in)
Alle anzeigen
Datum
2021-02-15Typ
- Working Paper
ETH Bibliographie
yes
Altmetrics
Abstract
Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of the Weisfeiler--Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial predictive performance, both on synthetic data sets, which can be trivially classified by humans but not by ordinary GNNs, and on real-world data. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
arXivSeiten / Artikelnummer
Verlag
Cornell UniversityOrganisationseinheit
09486 - Borgwardt, Karsten M. (ehemalig) / Borgwardt, Karsten M. (former)
Zugehörige Publikationen und Daten
Is previous version of: http://hdl.handle.net/20.500.11850/590946
ETH Bibliographie
yes
Altmetrics