Topological Graph Neural Networks
dc.contributor.author
Horn, Max
dc.contributor.author
De Brouwer, Edward
dc.contributor.author
Moor, Michael
dc.contributor.author
Moreau, Yves
dc.contributor.author
Rieck, Bastian Alexander
dc.contributor.author
Borgwardt, Karsten
dc.date.accessioned
2022-01-14T09:42:12Z
dc.date.available
2022-01-13T11:13:52Z
dc.date.available
2022-01-14T09:42:12Z
dc.date.issued
2021-02-15
dc.identifier.uri
http://hdl.handle.net/20.500.11850/525247
dc.description.abstract
Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of the Weisfeiler--Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial predictive performance, both on synthetic data sets, which can be trivially classified by humans but not by ordinary GNNs, and on real-world data.
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.title
Topological Graph Neural Networks
en_US
dc.type
Working Paper
ethz.journal.title
arXiv
ethz.pages.start
2102.07835v1
en_US
ethz.size
16 p.
en_US
ethz.identifier.arxiv
2102.07835v1
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09486 - Borgwardt, Karsten M. (ehemalig) / Borgwardt, Karsten M. (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09486 - Borgwardt, Karsten M. (ehemalig) / Borgwardt, Karsten M. (former)
en_US
ethz.relation.isPreviousVersionOf
handle/20.500.11850/590946
ethz.date.deposited
2022-01-13T11:13:58Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-01-14T09:42:20Z
ethz.rosetta.lastUpdated
2023-02-06T23:49:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Topological%20Graph%20Neural%20Networks&rft.jtitle=arXiv&rft.date=2021-02-15&rft.spage=2102.07835v1&rft.au=Horn,%20Max&De%20Brouwer,%20Edward&Moor,%20Michael&Moreau,%20Yves&Rieck,%20Bastian%20Alexander&rft.genre=preprint&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Working Paper [5713]