Modeling and Control of an Omnidirectional Micro Aerial Vehicle Equipped with a Soft Robotic Arm
dc.contributor.author
Szász, Róbert
dc.contributor.author
Allenspach, Mike
dc.contributor.author
Han Minghao
dc.contributor.author
Tognon, Marco
dc.contributor.author
Katzschmann, Robert K.
dc.date.accessioned
2022-01-25T10:25:14Z
dc.date.available
2022-01-18T12:45:27Z
dc.date.available
2022-01-25T10:25:14Z
dc.date.issued
2021-11-04
dc.identifier.uri
http://hdl.handle.net/20.500.11850/526584
dc.identifier.doi
10.3929/ethz-b-000526584
dc.description.abstract
Flying manipulators are aerial drones with attached rigid-bodied robotic arms and belong to the latest and most actively developed research areas in robotics. The rigid nature of these arms often lack compliance, flexibility, and smoothness in movement. This work proposes to use a soft-bodied robotic arm attached to an omnidirectional micro aerial vehicle (OMAV) to leverage the compliant and flexible behavior of the arm, while remaining maneuverable and dynamic thanks to the omnidirectional drone as the floating base. The unification of the arm with the drone poses challenges in the modeling and control of such a combined platform; these challenges are addressed with this work. We propose a unified model for the flying manipulator based on three modeling principles: the Piecewise Constant Curvature (PCC) and Augmented Rigid Body Model (ARBM) hypotheses for modeling soft continuum robots and a floating-base approach borrowed from the traditional rigid-body robotics literature. To demonstrate the validity and usefulness of this parametrisation, a hierarchical model-based feedback controller is implemented. The controller is verified and evaluated in simulation on various dynamical tasks, where the nullspace motions, disturbance recovery, and trajectory tracking capabilities of the platform are examined and validated. The soft flying manipulator platform could open new application fields in aerial construction, goods delivery, human assistance, maintenance, and warehouse automation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Modeling and Control of an Omnidirectional Micro Aerial Vehicle Equipped with a Soft Robotic Arm
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
arXiv
ethz.pages.start
2111.03111
en_US
ethz.size
8 p.
en_US
ethz.identifier.arxiv
2111.03111
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09689 - Katzschmann, Robert / Katzschmann, Robert
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09689 - Katzschmann, Robert / Katzschmann, Robert
en_US
ethz.relation.isPreviousVersionOf
handle/20.500.11850/595492
ethz.date.deposited
2022-01-18T12:45:33Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-25T10:25:23Z
ethz.rosetta.lastUpdated
2023-02-06T23:55:23Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Modeling%20and%20Control%20of%20an%20Omnidirectional%20Micro%20Aerial%20Vehicle%20Equipped%20with%20a%20Soft%20Robotic%20Arm&rft.jtitle=arXiv&rft.date=2021-11-04&rft.spage=2111.03111&rft.au=Sz%C3%A1sz,%20R%C3%B3bert&Allenspach,%20Mike&Han%20Minghao&Tognon,%20Marco&Katzschmann,%20Robert%20K.&rft.genre=preprint&
Files in this item
Publication type
-
Working Paper [5285]